Return to search

Tailoring nanoscale metallic heterostructures with novel quantum properties

Silver (Ag) is an ideal low-loss platform for plasmonic applications, but from a materials standpoint it presents challenges. Development of plasmonic devices based on Ag thin film has been hindered both by the dificulty of fabricating such film and by its fragility out of vacuum. Silver is non-wetting on semiconducting and insulating substrates, but on certain semiconductors and insulators can adopt a metastable atomically at epitaxial film morphology if it is deposited using the "two-step" growth method. This method consists of deposition at low temperature and annealing to room temperature. However, epitaxial Ag is metastable, and dewets out of vacuum. The mechanisms of dewetting in this system remain little understood. The fragility of Ag film presents a particular problem for the engineering of plasmonic devices, which are predicted to have important industrial applications if robust low-loss platforms can be developed. This dissertation presents two sets of experiments. In the first set, scanning probe techniques and low energy electron microscopy have been used to characterize Ag(111) growth and dewetting on two orientations of silicon (Si), Si(111) and Si(100). These studies reveal that multiple mechanisms contribute to Ag film dewetting. Film stability is observed to increase with thickness, and thickness to play a decisive role in determining dewetting processes. A method has been developed to cap Ag film with germanium (Ge) to stabilize it against dewetting. The second set of experiments consists of optical studies that focus on the plasmonic properties of epitaxial Ag film. Because of the problems posed until now by epitaxial Ag growth and stabilization, research and development in the area of plasmonics has been limited to devices based on rough, thermally evaporated Ag film, which is robust and simple to produce. However, plasmonic damping in such film is higher than in epitaxial film. The optical studies presented here establish that Ag film can now be stabilized sufficiently to allow optical probing and device applications out of vacuum. Furthermore, they demonstrate the superiority of epitaxial Ag film relative to thermally evaporated film as a low-loss platform for plasmonic devices spanning the visible and infrared regimes. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/21355
Date2013 May 1900
CreatorsSanders, Charlotte E.
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0023 seconds