Return to search

Modification of Titania with Gold-Copper Bimetallic Nanoparticles and Preparation of Copper-Based Photocatalysts : Application in Water Treatment

Photocatalysis is recently extensively studied because it implies a variety of potential industrial applications ranging from the hydrogen generation of water splitting to the treatment of waste water. Among all the semiconductors, TiO2 has attracted the most attention. But the rate of the electron-hole recombinations is very important and TiO2 is active only under UV light. Various methods are developed to enhance the photoactivity of TiO2. Other semiconductors like copper oxides and copper sulfides also attracted attention due to their lower band-gaps which allow applications in solar photocatalysis. In this work, different kinds of photocatalysts were developed and studied: surface modified TiO2 with metal nanoparticles and copper sulfides and oxides. The nanostructures were characterized by different techniques: HRTEM, SEM, XRD, XPS, HAADF-SEM, and TRMC. Their photocatalytic activity was studied for degradation of model pollutants: phenol, rhodamine B and methyl orange. Different chemical and radiolytic methods have been investigated to modify the surface of TiO2 by mono- and bimetallic (Au, Cu and Au-Cu) nanoparticles in the aim to improve its photocatalytic activity. The best results in term of photocatalytic activity have been obtained with reduction of THPC (tetrakis (hydroxymethyl) phosphonium chloride) and with radiolytic reduction after deposition with urea. Titania surface modification with Au, Cu and bimetallic Au-Cu NPs enables the increase of the photocatalytic activity under UV light. We have found that very small amounts of metal (0.5% wt.) can activate titania for photocatalytic applications, thus the costs of photocatalyst preparation are relatively low. Radiolytic syntheses of non-TiO2 photocatalysts including Cu2O and CuS nanostructures with different morphologies have been developed. The photocatalytic activity of the synthesized photocatalysts has been studied. Truncated octahedral Cu2O exhibit an excellent photocatalytic activity under visible illumination. CuS nanotubes (NTs) exhibit both a high ability to adsorb dyes and a photocatalytic activity under visible light.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00926757
Date02 July 2013
CreatorsZibin, Hai
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds