I och med att videospel blir mer avancerade, inte bara grafiskt utan också som konstform samt att dom erbjuder en mer inlevelsefull upplevelse, så kan det förväntas att spelen också ska erbjuda en större utmaning för att få spelaren bli ännu mer engagerad i spelet. Dagens spelare är vana vid fiender vars beteende styrs av tydliga mönster och regler, som beroende på situation agerar på ett förprogrammerat sätt och agerar utifrån förutsägbara mönster. Detta leder till en spelupplevelse där målet blir att klura ut det här mönstret och hitta ett sätt att överlista eller besegra det. Men tänk om det fanns en möjlighet att skapa en ny form av fiende svarar och anpassar sig beroende på hur spelaren beter sig? Som anpassar sig och kommer på egna strategier utifrån hur spelaren spelar, som aktivt försöker överlista spelaren? Genom maskininlärning i spel möjliggörs just detta. Med en maskininlärningsmodell som styr fienderna och tränas mot spelarna som möter den så lär sig fienderna att möta spelarna på ett dynamiskt sätt som anpassas allt eftersom spelaren spelar spelet. Den här studien ämnar att undersöka stegen som krävs för att implementera maskininlärning i Unity motorn samt undersöka ifall det finns någon upplevd skillnad i spelupplevelsen hos spelare som fått möta fiender styrda av en maskininlärningsmodell samt en mer traditionell typ av fiende. Data samlas in från testspelarnas spelsessioner samt deras svar i form av ett frågeformulär, där datan presenteras i grafform för att ge insikt kring ifall fienderna var likvärdigt svåra att spela mot. Svaren från frågeformulären används för att jämföra spelarnas spelupplevelser och utifrån detta se skillnaderna mellan dom. Skalan på spelet och dess enkelhet leder till att svaren inte bör påverkas av okända och ej kontrollerbara faktorer, vilket ger svar som ger oss insikt i skillnaderna mellan dom olika spelupplevelserna där en preferens för fiender styrda av maskininlärningsmodeller kan anas, då dom upplevs mer oförutsägbara och varierande. / As video games become more complex and more immersive, not just graphically or as an artform, but also technically, it can be expected that games behave on a deeper level to challenge and immerse the player further. Today’s gamers have gotten used to pattern based enemies, moving between preprogrammed states with predictable patterns, which lends itself to a certain kind of gameplay where the goal is to figure out how to beat said pattern. But what if there could be more in terms of challenging the player on an interactive level? What if the enemies could learn and adapt, trying to outsmart the player just as much as the player tries to outsmart the enemies. This is where the field of machine learning enters the stage and opens up for an entirely new type of non-player character in videogames. An enemy who uses a trained machine learning model to play against the player, who can adapt and become better as more people play the game. This study aims to look at early steps to implement machine learning in video games, in this case in the Unity engine, and look at the players perception of said enemies compared to normal state-driven enemies. Via testing voluntary players by letting them play against two kinds of enemies, data is gathered to compare the average performance of the players, after which players answer a questionnaire. These answers are analysed to give an indication of preference in type of enemy. Overall the small scale of the game and simplicity of the enemies gives clear answers but also limits the potential complexity of the enemies and thus the players enjoyment. Though this also enables us to discern a perceived difference in the players experience, where a preference for machine learning controlled enemies is noticeable, as they behave less predictable with more varied behaviour.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-42746 |
Date | January 2021 |
Creators | Nämerforslund, Tim |
Publisher | Mittuniversitetet, Institutionen för informationssystem och –teknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds