Die Methan (CH4) Produktion der Milchkühe wird durch eine Vielzahl von umwelt- und wirtsspezifischen Faktoren beeinflusst, wobei Trockensubstanzaufnahme und Rationszusammensetzung die größte Auswirkung haben. Der größte Teil des CH4 wird von Archaeen im Pansen produziert. Auch die kurzkettige Fettsäure (SCFA) Acetat wird im Pansen durch mikrobielle Fermentation gebildet und kann vom Wirtstier zur Milchfettsynthese im Euter verwendet werden. Die Acetatbildung im Pansen korreliert mit der CH4 Produktion. Allerdings kann Milchfett auch aus nicht veresterten Fettsäuren (NEFA) und Triacylgylcerolen endogenen Ursprungs synthetisiert werden, insbesondere aus mobilisiertem Körperfett.
In dieser Studie wurde die Hypothese überprüft, dass eine Verdrängung des zur Milchfettbildung genutzten Acetats durch eine höhere Körperfettmobilisation in der Frühlaktation die ruminale Acetatproduktion senkt und damit die Bildung von CH4 verringert. Ein weiteres Ziel war zu untersuchen, ob der Anstieg der CH4 Produktion im Laktationsverlauf mit einer Veränderung des Mikrobioms assoziiert ist, und ob sich Kühe mit hoher oder niedriger CH4 Emission in ihrer Bakterien- und Archaeen-Zusammensetzung unterscheiden.
20 Holstein Kühe wurden in ihrer ersten Laktation untersucht; ihre Futteraufnahme und Rationszusammensetzung wurde analysiert. Im Verlauf des Versuchs wurden mehrfach Blut- und Pansensaftproben gewonnen. Die Plasma-NEFA-Konzentrationen wurden photometrisch, die Pansen-SCFA-Konzentrationen mittels Gaschromatographie analysiert. Während des Beobachtungszeitraums wurde an 4 Zeitpunkten die individuelle CH4 Produktion in Respirationskammern erfasst. In einer Untergruppe von 9 Kühen wurden Pansensaftproben von 3 Zeitpunkten während der Laktation einer DNA-Extraktion unterzogen und bakterielle und archaeale 16S rRNA Amplicons wurden sequenziert. Die Bakterien- und Archaeenpopulation im Pansensaft wurden beschrieben und Pansenmikrobiom der CH4 Ausbeute gegenübergestellt. Statistische Auswertungen wurden mit repeated measurements ANOVA und Tukey Tests, sowie mit der Pearsons‘ Korrelation für ausgewählte Parameter durchgeführt. Mikrobielle Daten wurden mit multivariaten Analysen (PERMANOVA) weiterverarbeitet und Bray-Curtis-Unähnlichkeiten ermittelt.
Die gesamte CH4 Produktion stieg signifikant von durchschnittlich 208 l/Tag in der Trockenperiode auf 516 l/Tag in der Spätlaktation an. Der Grad der Körperfettmobilisation, ausgedrückt als Plasma NEFA Konzentration, und die CH4 Ausbeute waren in der Frühlaktation negativ korreliert (p = 0,002). Kühe mit hoher Fettmobilisation (NEFA > 580 μmol/l) neigten nur vor der Geburt, aber nicht während der Laktation zu höheren Pansenacetat Konzentrationen als Tiere mit niedriger Mobilisation (NEFA < 580 μmol/l). Trotz einer möglichst gleichbleibenden Rationszusammensetzung während der Laktation änderte sich das Mikrobiom mit der Zeit signifikant, was sich in einer Abnahme des Artenreichtums und der Biodiversität zeigte. In der Spätlaktation, als die CH4 Ausbeute am höchsten war, gab es keinen Unterschied in der bakteriellen oder archealen Populationsstruktur zwischen den drei Kühen mit der schwächsten und den dreien mit der stärksten CH4 Ausbeute. Parallel zum Anstieg der CH4 Produktion von 434,3 l/Tag auf 540,5 l/Tag veränderte sich das Verhältnis von (Acetat + Butyrat) / Propionat im Pansensaft mit dem Fortschreiten der Laktation von 3,5 auf 4,4. Dennoch war kein Zusammenhang zwischen der Konzentration der ruminalen SCFA und der CH4 Ausbeute festzustellen.
Der Stoffwechselzustand des Tieres, insbesondere der Grad der Körperfettmobilisierung bei negativer Energiebilanz, nahm Einfluss auf die CH4-Ausbeute. Die Zusammensetzung des Mikrobioms im Pansen und dessen Stoffwechselnetzwerk veränderte sich mit der Zeit. Es war jedoch in dieser Studie nicht möglich, einzelne Mikroorganismen als Prädiktor für die CH4-Emission von Milchkühen zu identifizieren. Vielmehr scheinen Verschiebungen der mikrobiellen Gemeinschaften insgesamt für die Veränderung der CH4 Ausbeute verantwortlich zu sein.:1 Introduction 1
2 Background 2
2.1 Greenhouse Gases 2
2.2 Dairy cows and their importance to food production 3
2.3 Rumen functions 5
2.3.1 Anatomy and Physiology 5
2.3.2 Rumen microbes 7
2.3.2.1 Bacteria 8
2.3.2.2 Archaea 11
2.3.3 Short-chain fatty acids 12
2.3.4 Methane formation 15
2.4 Interrelationship between methane and host animal physiology 15
2.4.1 Physiologic aspects affecting methane formation 15
2.5 Effects of feed composition and feed contents on methane production 16
2.5.1 Relationship of ruminal short-chain fatty acids and methane production 17
2.5.2 Milk fatty acids to estimate methane emission 19
2.6 Description of methods 20
2.6.1 Methane Measurement 20
2.6.2 Sampling of rumen contents 21
2.6.3 Methods to identify microbes 22
2.7 Objective and realization of the studies 23
3 Publications 26
3.1 First Publication 26
3.1.1 Supplement first Publication 40
3.2 Second Publication 42
3.2.1 Supplement second Publication 56
4 Discussion 60
4.1 Assessment of experimental design 60
4.1.1 Animals 60
4.1.2 Feed 61
4.1.3 Rumen fluid 61
4.1.4 Blood and milk metabolites 62
4.2 Assessment of results 62
4.2.1 Variance of methane emissions 62
4.2.2 Rumen short-chain fatty acids and methane 65
4.2.3 Acetate in the cows’ metabolism and methane production 66
4.2.4 Fat mobilization in early lactation 67
4.2.5 NEFA in the context of metabolism 68
4.2.6 Rumen microbes 69
4.2.6.1 Microbial community change over time 70
4.2.6.2 Community differences between individuals 71
4.2.6.3 Relationship between microbes and methane production levels 72
4.2.7 Further considerations 74
5 Conclusions 75
6 Summary 77
7 Zusammenfassung 79
8 References 81 / Methane (CH4) production in dairy cows is influenced by a variety of environmental and host-specific factors, among which dry matter intake and ration composition have the greatest impact. The major part of CH4 is produced in the rumen by Archaea. The short-chain fatty acid (SCFA) acetate is also produced in the rumen by microbial fermentation and can be used by the host to synthesize milk fat in the mammary gland. The production of acetate is correlated with ruminal CH4 production. Milk fat can also be synthesized from non-esterified fatty acids (NEFA) and triacylglycerol that originate from endogenous fat stores of dairy cows, especially during times of fat mobilization.
This study checked the hypothesis that a higher fat mobilization during early lactation decreases ruminal acetate production by replacing acetate for milk fat synthesis and, thus, decreases synthesis of CH4. Another aim of this study was to test the hypothesis that increases in CH4 yield over the course of lactation are associated with changes in rumen microbial community profile, and that high and low CH4 emitting cows differ in their bacterial and archaeal community structure.
A herd of 20 Holstein cows was studied during the course of their first lactation; feed intake and diet composition was monitored. Blood and rumen fluid were repeatedly sampled throughout the trial. Plasma NEFA concentrations were analyzed by photometrical analysis, and rumen SCFA concentrations by gas chromatography. Individual CH4 production was measured in respiration chambers at four times during the observation period. In a subgroup of 9 cows, rumen fluid samples from 3 timepoints during lactation were subjected to DNA extraction and bacterial and archaeal 16S rRNA amplicons were sequenced. The bacterial and archaeal community structures in the rumen fluid were described, and the rumen microbiome composition linked to CH4 yield. Statistical analysis was conducted using repeated measurement ANOVA and Tukey tests, as well as Pearsons’ correlation for selected parameters. Microbial data was further treated with multivariate analyses (PERMANOVA) and Bray-Curtis dissimilarities were determined.
Total CH4 production increased significantly over time from an average 208 L/day during the dry period to 516 L/day in late lactation. The level of fat mobilization, expressed as blood plasma NEFA concentrations, and CH4 yield showed an inverse relationship in early lactation (p = 0.002). High mobilizing cows (NEFA > 580 μmol/L) tended to show higher ruminal acetate concentrations than low mobilizing cows (NEFA < 580 μmol/L) only before parturition and not during lactation. Despite a diet composition that was kept as constant as possible throughout the lactation, the microbial community changed significantly over time as indicated by a decrease in species richness and species evenness. However, in late lactation when CH4 yield was highest, no difference in bacterial or archaeal community structure could be detected between the three highest CH4 yielding cows and the three lowest CH4 yielding cows. The ratio of (acetate + butyrate) / propionate in rumen fluid changed significantly with progressing lactation from 3.5 to 4.4, accompanied by an increase in CH4 production from 434.3 L/d to 540.5 L/d. However, no correlation between the concentration of ruminal SCFA and CH4 yield was found.
The metabolic state of the animal, especially the degree of fat mobilization during times of negative energy balance, had an impact on CH4 yield. Also, the microbial community composition in the rumen and its metabolic network is adaptable and changes over time. However, in this study individual microorganisms could not be identified to serve as predictor for CH4 emission from dairy cows at the moment. Rather, shifts in the microbial communities as a whole appear to be responsible for the changes in CH4 yield.:1 Introduction 1
2 Background 2
2.1 Greenhouse Gases 2
2.2 Dairy cows and their importance to food production 3
2.3 Rumen functions 5
2.3.1 Anatomy and Physiology 5
2.3.2 Rumen microbes 7
2.3.2.1 Bacteria 8
2.3.2.2 Archaea 11
2.3.3 Short-chain fatty acids 12
2.3.4 Methane formation 15
2.4 Interrelationship between methane and host animal physiology 15
2.4.1 Physiologic aspects affecting methane formation 15
2.5 Effects of feed composition and feed contents on methane production 16
2.5.1 Relationship of ruminal short-chain fatty acids and methane production 17
2.5.2 Milk fatty acids to estimate methane emission 19
2.6 Description of methods 20
2.6.1 Methane Measurement 20
2.6.2 Sampling of rumen contents 21
2.6.3 Methods to identify microbes 22
2.7 Objective and realization of the studies 23
3 Publications 26
3.1 First Publication 26
3.1.1 Supplement first Publication 40
3.2 Second Publication 42
3.2.1 Supplement second Publication 56
4 Discussion 60
4.1 Assessment of experimental design 60
4.1.1 Animals 60
4.1.2 Feed 61
4.1.3 Rumen fluid 61
4.1.4 Blood and milk metabolites 62
4.2 Assessment of results 62
4.2.1 Variance of methane emissions 62
4.2.2 Rumen short-chain fatty acids and methane 65
4.2.3 Acetate in the cows’ metabolism and methane production 66
4.2.4 Fat mobilization in early lactation 67
4.2.5 NEFA in the context of metabolism 68
4.2.6 Rumen microbes 69
4.2.6.1 Microbial community change over time 70
4.2.6.2 Community differences between individuals 71
4.2.6.3 Relationship between microbes and methane production levels 72
4.2.7 Further considerations 74
5 Conclusions 75
6 Summary 77
7 Zusammenfassung 79
8 References 81
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35883 |
Date | 30 October 2019 |
Creators | Bielak, Anita |
Contributors | Cermak, Rainer, Kuhla, Björn, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds