O processo de tomada de decisão, em diferentes ambientes gerenciais, enfrenta um momento de mudança no contexto organizacional. Nesse sentido, Business Analytics pode ser visto como uma área que permite alavancar o valor dos dados, contendo ferramentas importantes para o processo de tomada de decisão. No entanto, a presença de dados em diferentes formatos representa um desafio. Nesse contexto de variabilidade, os dados de texto têm atraído a atenção das organizações, já que milhares de pessoas se expressam diariamente neste formato, em muitas aplicações e ferramentas disponíveis. Embora diversas técnicas tenham sido desenvolvidas pela comunidade de ciência da computação, há amplo espaço para melhorar a utilização organizacional de tais dados de texto, especialmente quando se volta para o suporte à tomada de decisões. No entanto, apesar da importância e disponibilidade de dados em formato textual para apoiar decisões, seu uso não é comum devido à dificuldade de análise e interpretação que o volume e o formato de dados em texto apresentam. Assim, o objetivo desta tese é desenvolver e avaliar um framework voltado ao uso de dados de texto em processos decisórios, apoiando-se em diversas técnicas de processamento de linguagem natural (PNL). Os resultados apresentam a validade do framework, usando como instância de demonstração de sua aplicabilidade o setor de turismo através da plataforma TripAdvisor, bem como a validação interna de performance e a aceitação por parte dos gestores da área consultados. / The decision-making process, in different management environments, faces a moment of change in the organizational context. In this sense, Business Analytics can be seen as an area that leverages the value of data, containing important tools for the decision-making process. However, the presence of data in different formats poses a challenge. In this context of variability, text data has attracted the attention of organizations, as thousands of people express themselves daily in this format in many applications and tools available. Although several techniques have been developed by the computer science community, there is ample scope to improve the organizational use of such text data, especially when it comes to decision-making support. However, despite the importance and availability of textual data to support decisions, its use is not common because of the analysis and interpretation challenge that the volume and the unstructured format of text data presents. Thus, the aim of this dissertation is to develop and evaluate a framework to contribute with the expansion and development of text analytics in decision-making processes, based on several natural language processing (NLP) techniques. The results presents the validity of the framework, using as a demonstration of its applicability the tourism sector through the TripAdvisor platform, as well as the internal validation of performance and the acceptance by managers.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/174130 |
Date | January 2018 |
Creators | Marcolin, Carla Bonato |
Contributors | Becker, Joao Luiz |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds