Return to search

ANALYSIS OF THE EFFECTS OF HEAVILY LOADED MAT FOUNDATION ON ADJACENT DRILLED SHAFT FOUNDATION

Construction of heavily loaded shallow foundations adjacent to deep foundation is generally avoided in common geotechnical engineering practice to minimize additional loads on deep foundations. However, with the growing trend of urbanization leading to a demand of new construction, it is not always possible to avoid such situation where a heavily loaded shallow foundation will be right next to the infrastructure resting on deep foundations. When this situation cannot be avoided, influence of soil pressures and deformations in soil, created by shallow foundation on adjacent deep foundation, must be evaluated. The study of interaction between deep foundations has been carried out by several researchers in terms of pile-soil-pile interaction. Similarly, there are many published studies on interaction between closely spaced shallow foundations in terms of bearing capacity and settlement. However, not much published literature is available for practicing engineers to analyze and design deep and shallow foundations when they are constructed adjacent to each other. Construction of heavily loaded mat adjacent to drilled shafts would cause complex interaction between the foundations. However, lateral stress and drag forces on the shafts resulting from the heavy load on the mat foundation are the two major factors that would affect the design and performance of shafts. Since there is not much literature and guidance available to analyze and design such kind of situation, a preliminary investigation was first carried out where magnitude of the drag forces and lateral forces on drilled shafts were estimated using simple geotechnical engineering principles. The limitations of preliminary analysis led to the need of more sophisticated analysis using finite element techniques. As a part of this research, a detailed parametric study using finite element techniques has been performed to better understand stress and deformation distributions, and develop simplified methods to analyze this type of problems. A stress bulb for lateral stresses under a uniformly loaded square foundation, similar to the pressure bulb for vertical stresses which is widely used in the geotechnical engineering practice, has been proposed, which provides a significant tool for practicing engineers to understand lateral stress distribution below a uniformly loaded square area and estimate lateral stresses on nearby deep foundations. Similarly, a deformation bulb under a uniformly loaded square foundation is proposed. A new term “Isodefers” has been proposed to refer the lines of equal deformation. Isodefers are also a significant tool for practicing engineers to understand vertical deformation distribution below a uniformly loaded square area and estimate drag forces on nearby deep foundations. A case study emerging from similar real life scenario has also been analyzed and results are discussed with suitable recommendations.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-2125
Date01 December 2015
CreatorsJha, Pravin
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0022 seconds