• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pile Downdrag During Construction of Two Bridge Abutments

Sears, Brian Keith 08 October 2008 (has links) (PDF)
Two steel pipe piles in place in abutments for two different bridge constructions sites were instrumented with strain gauges to measure the magnitude of negative skin friction. The piles were monitored before, during and up to 19 months after construction was completed. The load versus depth and time in each pile is discussed. Maximum observed dragloads ranged from 98 to 127 kips. A comparison with two methods for calculating dragloads is presented. Both comparison methods were found to be conservative, with the Briaud and Tucker (1997) approach more closely estimating the observed load versus depth behavior.
2

Numerical Assessment Of Negative Skin Friction Effects On Diaphragm Walls

Gencoglu, Cansu 01 January 2013 (has links) (PDF)
Within the confines of this study, numerical simulations of time dependent variation of downdrag forces on the diaphragm walls are analyzed for a generic soil site, where consolidation is not completed. As part of the first generic scenario, consolidation of a clayey site due to the application of the embankment is assessed. Then two sets of diaphragm walls, with and without bitumen coating, are analyzed. For comparison purposes, conventional analytical calculation methods (i.e., rigid-plastic and elastic-plastic soil models) are also used, the results of which, establish a good basis of comparison with finite-element based simulation results. Additionaly, the same generic cases are also analyzed during the stages of excavation, when diaphragm walls are laterally loaded. As the concluding remark, on the basis of time dependent stress and displacement responses of bitumen coated and uncoated diaphragm walls, it was observed that negative skin friction is a rather complex time-dependent soil-structure and loading interaction problem. This problem needs to be assessed through methods capable of modeling the complex nature of the interaction. Current analytical methods may significantly over-estimate the amount of negative skin friction applied on the system, hence they are judged to be over-conservative. However, if negative skin friction is accompanied by partial unloading as expected in diaphragm walls or piles used for deep excavations, then they may be subject to adverse combinations of axial load and moment, which may produce critical combinations expressed in interaction diagrams. Neglecting the axial force and moment interaction may produce unconservative results.
3

ANALYSIS OF THE EFFECTS OF HEAVILY LOADED MAT FOUNDATION ON ADJACENT DRILLED SHAFT FOUNDATION

Jha, Pravin 01 December 2015 (has links)
Construction of heavily loaded shallow foundations adjacent to deep foundation is generally avoided in common geotechnical engineering practice to minimize additional loads on deep foundations. However, with the growing trend of urbanization leading to a demand of new construction, it is not always possible to avoid such situation where a heavily loaded shallow foundation will be right next to the infrastructure resting on deep foundations. When this situation cannot be avoided, influence of soil pressures and deformations in soil, created by shallow foundation on adjacent deep foundation, must be evaluated. The study of interaction between deep foundations has been carried out by several researchers in terms of pile-soil-pile interaction. Similarly, there are many published studies on interaction between closely spaced shallow foundations in terms of bearing capacity and settlement. However, not much published literature is available for practicing engineers to analyze and design deep and shallow foundations when they are constructed adjacent to each other. Construction of heavily loaded mat adjacent to drilled shafts would cause complex interaction between the foundations. However, lateral stress and drag forces on the shafts resulting from the heavy load on the mat foundation are the two major factors that would affect the design and performance of shafts. Since there is not much literature and guidance available to analyze and design such kind of situation, a preliminary investigation was first carried out where magnitude of the drag forces and lateral forces on drilled shafts were estimated using simple geotechnical engineering principles. The limitations of preliminary analysis led to the need of more sophisticated analysis using finite element techniques. As a part of this research, a detailed parametric study using finite element techniques has been performed to better understand stress and deformation distributions, and develop simplified methods to analyze this type of problems. A stress bulb for lateral stresses under a uniformly loaded square foundation, similar to the pressure bulb for vertical stresses which is widely used in the geotechnical engineering practice, has been proposed, which provides a significant tool for practicing engineers to understand lateral stress distribution below a uniformly loaded square area and estimate lateral stresses on nearby deep foundations. Similarly, a deformation bulb under a uniformly loaded square foundation is proposed. A new term “Isodefers” has been proposed to refer the lines of equal deformation. Isodefers are also a significant tool for practicing engineers to understand vertical deformation distribution below a uniformly loaded square area and estimate drag forces on nearby deep foundations. A case study emerging from similar real life scenario has also been analyzed and results are discussed with suitable recommendations.
4

Response of piled buildings to the construction of deep excavations

Korff, Mandy January 2013 (has links)
Trends in the construction of deep excavations include deeper excavations situated closer to buildings. This research provides insight into mechanisms of soil-structure interaction for piled buildings adjacent to deep excavations to be used in the design and monitoring of deep excavations in urban areas. Most methods to assess building response have originally been developed for tunnelling projects or buildings with shallow foundations. Monitoring data of the construction of three deep excavations for the North South metro Line in Amsterdam, The Netherlands have been used to validate these methods specifically for piled buildings. In all three of the Amsterdam deep excavations studied, the largest impact on the ground surface and buildings is attributed to preliminary activities instead of the commonly expected excavation stage. The in situ preliminary activities caused 55-75% of the surface settlement and 55-65% of the building settlements. Surface settlements measured behind the wall were much larger than the wall deflections and reached over a distance of 2-3 times the excavated depth away from the wall. The shape of the surface settlements found resembles the hogging shape as defined by Peck (1969). For the excavation stage only, the shape of the displacement fits the profile proposed by Hsieh and Ou (1998). Most prediction methods overestimate the soil displacement at depth. An analytical method has been established and tested for the behaviour of piled buildings near excavations. This method includes the reduction of pile capacity due to lower stress levels, settlement due to soil deformations below the base of the pile and development of negative (or positive) skin friction due to relative movements of the soil and the pile shaft. The response of piles in the case of soil displacements depends on the working load of the pile, the percentages of end bearing and shaft friction of the pile, the size and shape of the soil settlements with depth and the distribution of the maximum shaft friction with depth. A method is derived to determine the level for each pile at which the pile and soil settlement are equal. Buildings in Amsterdam built before 1900 and without basement are most sensitive to soil displacements. For all other buildings, the pile settlement depends mainly on the working load. The actual damage experienced in buildings depends also on the relative stiffness of the building compared to the soil. Cross sections in Amsterdam have been evaluated and it is concluded that the Goh and Mair (2011) method provides a realistic, although rather large range of possible modification factors for the deflection of buildings next to excavations, deforming in hogging shape. For the incidents that happened at Vijzelgracht some well known damage indicators have been evaluated.
5

Blast-Induced Liquefaction and Downdrag Development on a Micropile Foundation

Lusvardi, Cameron Mark 14 December 2020 (has links)
Frequently, deep foundations extend through potentially liquefiable soils. When liquefaction occurs in cohesionless soils surrounding a deep foundation, the skin-friction in the liquefied layer is compromised. After cyclical forces suspend and pore pressures dissipate, effective stress rebuilds and the liquefied soil consolidates. When the settlement of the soil exceeds the downward movement of the foundation, downdrag develops. To investigate the loss and redevelopment of skin-friction, strain was measured on an instrumented micropile during a blast-induced liquefaction test in Mirabello, Italy. The soil profile where the micropile was installed consisted of clay to a depth of 6m underlain by a medium to dense sand. The 25cm diameter steel reinforced concrete micropile was bored to a depth of 17m. Pore pressure transducers were placed around the pile at various depths to observe excess pore pressure generation and dissipation. Soil strain was monitored with profilometers in a linear arrangement from the center of the 10m diameter ring of buried explosives out to a 12m radius. Immediately following the blast, liquefaction developed between 6m and 12m below ground. The liquefied layer settled 14cm (~2.4% volumetric strain) while the pile toe settled 1.24cm under elastic displacement. The static neutral plane in the pile occurred at a depth of 12m. From 6m to 12m below ground, the incremental skin-friction was 50% compared to pre-liquefaction measurements. The decrease in residual skin-friction is consistent with measurements observed by Dr. Kyle Rollins from previous full-scale tests in Vancouver, BC, Canada, Christchurch, New Zealand, and Turrel, Arkansas.
6

Blast-Induced Liquefaction and Downdrag Development on a Micropile Foundation

Lusvardi, Cameron Mark 14 December 2020 (has links)
Frequently, deep foundations extend through potentially liquefiable soils. When liquefaction occurs in cohesionless soils surrounding a deep foundation, the skin-friction in the liquefied layer is compromised. After cyclical forces suspend and pore pressures dissipate, effective stress rebuilds and the liquefied soil consolidates. When the settlement of the soil exceeds the downward movement of the foundation, downdrag develops. To investigate the loss and redevelopment of skin-friction, strain was measured on an instrumented micropile during a blast-induced liquefaction test in Mirabello, Italy. The soil profile where the micropile was installed consisted of clay to a depth of 6m underlain by a medium to dense sand. The 25cm diameter steel reinforced concrete micropile was bored to a depth of 17m. Pore pressure transducers were placed around the pile at various depths to observe excess pore pressure generation and dissipation. Soil strain was monitored with profilometers in a linear arrangement from the center of the 10m diameter ring of buried explosives out to a 12m radius. Immediately following the blast, liquefaction developed between 6m and 12m below ground. The liquefied layer settled 14cm (~2.4% volumetric strain) while the pile toe settled 1.24cm under elastic displacement. The static neutral plane in the pile occurred at a depth of 12m. From 6m to 12m below ground, the incremental skin-friction was 50% compared to pre-liquefaction measurements. The decrease in residual skin-friction is consistent with measurements observed by Dr. Kyle Rollins from previous full-scale tests in Vancouver, BC, Canada, Christchurch, New Zealand, and Turrel, Arkansas.

Page generated in 0.1452 seconds