• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Srovnání použití bezdrátových sítí 802.11 a/b/g/n a E-band v praxi / Practical Evaluation of Wireless Network 802.11 a/b/g/n and E-Band

Žiška, Jiří January 2010 (has links)
This master's thesis compares wireless technologies which they are used at current time. The most of information in this thesis are obtained from my practical experiences with design and realization of wireless network during last four years. The thesis briefly describes standards and security of WiFi. More time is devoted to the description of new standard 802.11n and the E-Band. The use of E-Band is allowed in Czech Republic from a year 2008. The thesis describes a practical evaluation of wireless network 802.11a/b/g/n and E-Band. Examples of the use are described in case studies of high-speed point-to-point wireless bridge, coverage of a logistic warehouse and wireless network with location in a hospital.
2

Novo procedimento para a realização de análise capwap no ensaio de carregamento dinâmico em estacas pré-moldadas. / New prodedure to perform CAPWAP analysis on dinamic load test in precast concrete piles.

Murakami, Daniel Kina 01 October 2015 (has links)
Desde a década de 1980 diversos autores apresentaram correlações entre provas de carga estática e ensaios de carregamento dinâmico em estacas. Para uma boa correlação é fundamental que os testes sejam bem executados e que atinjam a ruptura segundo algum critério, como o de Davisson, por exemplo, além de levar em conta o intervalo de tempo entre a execução da prova de carga estática e do ensaio dinâmico, face ao efeito \"set up\". Após a realização do ensaio dinâmico realiza-se a análise CAPWAP que permite a determinação da distribuição do atrito lateral em profundidade, a carga de ponta e outros parâmetros dos solos tais como quakes e damping. A análise CAPWAP é realizada por tentativas através do procedimento \"signal matching\", isto é, o melhor ajuste entre os sinais de força medido pelos sensores e o calculado. É relativamente fácil mostrar que a mesma solução pode ser obtida através de dados de entrada diferentes. Isso significa que apesar de apresentarem cargas mobilizadas próximas o formato da curva da simulação de prova de carga estática, obtida pelo CAPWAP, assim como a distribuição do atrito lateral, podem ser diferentes, mesmo que as análises apresentem \"match quality\" (MQWU) satisfatórios. Uma forma de corrigir o formato da curva simulada do CAPWAP, assim como a distribuição do atrito lateral, é através da comparação com provas de carga estática (PCE). A sobreposição das duas curvas, a simulada e a \"real\", permite a determinação do quake do fuste através do trecho inicial da curva carga-recalque da prova de carga estática, que por sua vez permite uma melhor definição da distribuição do atrito lateral e da reação de ponta. Neste contexto surge o conceito de \"match quality de recalques\" (MQR). Quando a PCE não está disponível, propõe-se efetuar um carregamento estático utilizando o peso próprio do martelo do bate-estaca (CEPM). Mostra-se, através de dois casos de obra, em que estavam disponíveis ensaios de carregamento dinâmico e PCEs, que esse procedimento permite obter uma melhor solução do ponto de vista físico, isto é consistente com as características do subsolo e com a curva carga-recalque da PCE, e não apenas matemático, através da avaliação do \"match quality\" (MQWU). / Since the 1980s a lot of authors showed correlations between static load tests and dynamic load tests on piles. For a good correlation it is necessary a good execution of the load test, also it is necessary to choose a capacity value from the results of the static load test, for example, the Davisson Offset limit load. The time of execution between the static load test and the dynamic load test should be considered because of the set up effect. Dynamic data may be further analyzed by CAPWAP Method to evaluate the soil resistance distribution, the toe resistance, quake and damping values. It is a signal matching method. Its results are based on the \"best possible match\" between computed pile top variable such as the pile top force and its measured equivalent. It is easy to demonstrate almost the same pile capacity on CAPWAP using different soil parameters. It means that even the pile capacity is almost the same, the shape of the pile top load-displacement of the CAPWAP Method and the shaft friction distribution can be different, although all results confirm good match quality. One way to correct the shape of the top loaddisplacement of the CAPWAP Method, as well as the shaft friction distribution, is by comparisson to a static load test. Overlaying both curves, the static load test and the CAPWAP Method, it is possible to determine the shaft quake value on the initial loads on the top load-displacement curve, allowing this way a improvement of the shaft resistance distribution and the toe resistance. In this context arises the concept of \"match quality of settlements\". When the static load test is not avaliabe, this thesis proposes a static load test using the hammer\'s weight of the pile driving machine. It is shown by two case studies that were available static load tests and dynamic load tests, this procedure allows a better solution on physics aspects, this is consistent with the subsoil conditions and the load-settlement curve of the static load test, not only a mathematical solution based on match quality.
3

Novo procedimento para a realização de análise capwap no ensaio de carregamento dinâmico em estacas pré-moldadas. / New prodedure to perform CAPWAP analysis on dinamic load test in precast concrete piles.

Daniel Kina Murakami 01 October 2015 (has links)
Desde a década de 1980 diversos autores apresentaram correlações entre provas de carga estática e ensaios de carregamento dinâmico em estacas. Para uma boa correlação é fundamental que os testes sejam bem executados e que atinjam a ruptura segundo algum critério, como o de Davisson, por exemplo, além de levar em conta o intervalo de tempo entre a execução da prova de carga estática e do ensaio dinâmico, face ao efeito \"set up\". Após a realização do ensaio dinâmico realiza-se a análise CAPWAP que permite a determinação da distribuição do atrito lateral em profundidade, a carga de ponta e outros parâmetros dos solos tais como quakes e damping. A análise CAPWAP é realizada por tentativas através do procedimento \"signal matching\", isto é, o melhor ajuste entre os sinais de força medido pelos sensores e o calculado. É relativamente fácil mostrar que a mesma solução pode ser obtida através de dados de entrada diferentes. Isso significa que apesar de apresentarem cargas mobilizadas próximas o formato da curva da simulação de prova de carga estática, obtida pelo CAPWAP, assim como a distribuição do atrito lateral, podem ser diferentes, mesmo que as análises apresentem \"match quality\" (MQWU) satisfatórios. Uma forma de corrigir o formato da curva simulada do CAPWAP, assim como a distribuição do atrito lateral, é através da comparação com provas de carga estática (PCE). A sobreposição das duas curvas, a simulada e a \"real\", permite a determinação do quake do fuste através do trecho inicial da curva carga-recalque da prova de carga estática, que por sua vez permite uma melhor definição da distribuição do atrito lateral e da reação de ponta. Neste contexto surge o conceito de \"match quality de recalques\" (MQR). Quando a PCE não está disponível, propõe-se efetuar um carregamento estático utilizando o peso próprio do martelo do bate-estaca (CEPM). Mostra-se, através de dois casos de obra, em que estavam disponíveis ensaios de carregamento dinâmico e PCEs, que esse procedimento permite obter uma melhor solução do ponto de vista físico, isto é consistente com as características do subsolo e com a curva carga-recalque da PCE, e não apenas matemático, através da avaliação do \"match quality\" (MQWU). / Since the 1980s a lot of authors showed correlations between static load tests and dynamic load tests on piles. For a good correlation it is necessary a good execution of the load test, also it is necessary to choose a capacity value from the results of the static load test, for example, the Davisson Offset limit load. The time of execution between the static load test and the dynamic load test should be considered because of the set up effect. Dynamic data may be further analyzed by CAPWAP Method to evaluate the soil resistance distribution, the toe resistance, quake and damping values. It is a signal matching method. Its results are based on the \"best possible match\" between computed pile top variable such as the pile top force and its measured equivalent. It is easy to demonstrate almost the same pile capacity on CAPWAP using different soil parameters. It means that even the pile capacity is almost the same, the shape of the pile top load-displacement of the CAPWAP Method and the shaft friction distribution can be different, although all results confirm good match quality. One way to correct the shape of the top loaddisplacement of the CAPWAP Method, as well as the shaft friction distribution, is by comparisson to a static load test. Overlaying both curves, the static load test and the CAPWAP Method, it is possible to determine the shaft quake value on the initial loads on the top load-displacement curve, allowing this way a improvement of the shaft resistance distribution and the toe resistance. In this context arises the concept of \"match quality of settlements\". When the static load test is not avaliabe, this thesis proposes a static load test using the hammer\'s weight of the pile driving machine. It is shown by two case studies that were available static load tests and dynamic load tests, this procedure allows a better solution on physics aspects, this is consistent with the subsoil conditions and the load-settlement curve of the static load test, not only a mathematical solution based on match quality.
4

Análise da transferência de carga em estacas cravadas em argila mole à partir de provas de carga dinâmica de energia crescente / Load transfer analysis in driven piles in soft clay from increasing energy dynamic loading tests

Balech, Jean 31 March 2000 (has links)
A utilização de métodos de análise apoiados na Teoria da Equação da Onda, a partir da instrumentação de medidas dinâmicas, como controle do comportamento de estacas, tem evoluído continuamente nos últimos anos. Após importantes considerações sobre a prova de carga dinâmica de energia crescente e o mecanismo de transferência de carga, procedem-se análises CAPWAP em um caso real de obra com o objetivo de analisar o comportamento do sistema estaca-solo perante a aplicação de níveis crescentes de energia. São apresentados nesta dissertação, os resultados do comportamento de vários sistemas isolados estaca-solo em maciço de argila mole, submetidos à prova de carga dinâmica de energia crescente. São feitas análises de: transferência de carga, atrito lateral local, quake da ponta, tensões dinâmicas e correlação entre prova de carga estática e dinâmica. / The use of analysis methods to control pile behavior employing the Stress-Wave Theory from results of dynamic pile driving measurements has evolved in recent years. After important considerations about the increasing energy dynamic loading test and the load transfer mechanism, CAPWAP analyses are proceed in a pilework with objective of analyzing the behavior of the pile-soil system before the application of growing levels of energy. Therefore, they are presented in this dissertation, the results of the behavior of several isolated pile-soil systems in soft clay formation, submitted to the dynamic loading test of growing energy. Among the analyses, load transfer diagrams, local friction, quake, dynamic tensions, and the correlation between static and dynamic loading test are presented.
5

Análise da transferência de carga em estacas cravadas em argila mole à partir de provas de carga dinâmica de energia crescente / Load transfer analysis in driven piles in soft clay from increasing energy dynamic loading tests

Jean Balech 31 March 2000 (has links)
A utilização de métodos de análise apoiados na Teoria da Equação da Onda, a partir da instrumentação de medidas dinâmicas, como controle do comportamento de estacas, tem evoluído continuamente nos últimos anos. Após importantes considerações sobre a prova de carga dinâmica de energia crescente e o mecanismo de transferência de carga, procedem-se análises CAPWAP em um caso real de obra com o objetivo de analisar o comportamento do sistema estaca-solo perante a aplicação de níveis crescentes de energia. São apresentados nesta dissertação, os resultados do comportamento de vários sistemas isolados estaca-solo em maciço de argila mole, submetidos à prova de carga dinâmica de energia crescente. São feitas análises de: transferência de carga, atrito lateral local, quake da ponta, tensões dinâmicas e correlação entre prova de carga estática e dinâmica. / The use of analysis methods to control pile behavior employing the Stress-Wave Theory from results of dynamic pile driving measurements has evolved in recent years. After important considerations about the increasing energy dynamic loading test and the load transfer mechanism, CAPWAP analyses are proceed in a pilework with objective of analyzing the behavior of the pile-soil system before the application of growing levels of energy. Therefore, they are presented in this dissertation, the results of the behavior of several isolated pile-soil systems in soft clay formation, submitted to the dynamic loading test of growing energy. Among the analyses, load transfer diagrams, local friction, quake, dynamic tensions, and the correlation between static and dynamic loading test are presented.
6

Full-Scale Testing of Blast-Induced Liquefaction Downdrag on Driven Piles in Sand

Kevan, Luke Ian 01 July 2017 (has links)
Deep foundations such as driven piles are often used to bypass liquefiable layers of soil and bear on more competent strata. When liquefaction occurs, the skin friction around the deep foundation goes to zero in the liquefiable layer. As the pore pressures dissipate, the soil settles. As the soil settles, negative skin friction develops owing to the downward movement of the soil surrounding the pile. To investigate the magnitude of the skin friction along the shaft three driven piles, an H-pile, a closed end pipe pile, and a concrete square pile, were instrumented and used to measure soil induced load at a site near Turrell, Arkansas following blast-induced liquefaction. Measurements were made of the load in the pile, the settlement of the ground and the settlement of piles in each case. Estimates of side friction and end-bearing resistance were obtained from Pile Driving Analyzer (PDA) measurements during driving and embedded O-cell type testing. The H-pile was driven to a depth of 94 feet, the pipe pile 74 feet, and the concrete square pile 72 feet below the ground surface to investigate the influence of pile depth in response to liquefaction. All three piles penetrated the liquefied layer and tipped out in denser sand. The soil surrounding the piles settled 2.5 inches for the H-pile, 2.8 inches for the pipe pile and 3.3 inches for the concrete square pile. The piles themselves settled 0.28 inches for the H-pile, 0.32 inches for the pipe pile, and 0.28 inches for the concrete square pile. During reconsolidation, the skin friction of the liquefied layer was 43% for the H-pile, 41% for the pipe pile, and 49% for the concrete square pile. Due to the magnitude of load felt in the piles from these tests the assumption of 50% skin friction developing in the liquefied zone is reasonable. Reduced side friction in the liquefied zone led to full mobilization of skin friction in the non-liquefied soil, and partial mobilization of end bearing capacity. The neutral plane, defined as the depth where the settlement of the soil equals the settlement of the pile, was outside of the liquefied zone in each scenario. The neutral plane method that uses mobilized end bearing measured during blasting to calculate settlement of the pile post liquefaction proved to be accurate for these three piles.
7

Modeling Pile Setup for Closed-Ended Pipe Piles Driven in Cohesive Soils

Alzahrani, Saeed 15 May 2023 (has links)
No description available.
8

Blast-Induced Liquefaction and Downdrag Development on a Micropile Foundation

Lusvardi, Cameron Mark 14 December 2020 (has links)
Frequently, deep foundations extend through potentially liquefiable soils. When liquefaction occurs in cohesionless soils surrounding a deep foundation, the skin-friction in the liquefied layer is compromised. After cyclical forces suspend and pore pressures dissipate, effective stress rebuilds and the liquefied soil consolidates. When the settlement of the soil exceeds the downward movement of the foundation, downdrag develops. To investigate the loss and redevelopment of skin-friction, strain was measured on an instrumented micropile during a blast-induced liquefaction test in Mirabello, Italy. The soil profile where the micropile was installed consisted of clay to a depth of 6m underlain by a medium to dense sand. The 25cm diameter steel reinforced concrete micropile was bored to a depth of 17m. Pore pressure transducers were placed around the pile at various depths to observe excess pore pressure generation and dissipation. Soil strain was monitored with profilometers in a linear arrangement from the center of the 10m diameter ring of buried explosives out to a 12m radius. Immediately following the blast, liquefaction developed between 6m and 12m below ground. The liquefied layer settled 14cm (~2.4% volumetric strain) while the pile toe settled 1.24cm under elastic displacement. The static neutral plane in the pile occurred at a depth of 12m. From 6m to 12m below ground, the incremental skin-friction was 50% compared to pre-liquefaction measurements. The decrease in residual skin-friction is consistent with measurements observed by Dr. Kyle Rollins from previous full-scale tests in Vancouver, BC, Canada, Christchurch, New Zealand, and Turrel, Arkansas.
9

Blast-Induced Liquefaction and Downdrag Development on a Micropile Foundation

Lusvardi, Cameron Mark 14 December 2020 (has links)
Frequently, deep foundations extend through potentially liquefiable soils. When liquefaction occurs in cohesionless soils surrounding a deep foundation, the skin-friction in the liquefied layer is compromised. After cyclical forces suspend and pore pressures dissipate, effective stress rebuilds and the liquefied soil consolidates. When the settlement of the soil exceeds the downward movement of the foundation, downdrag develops. To investigate the loss and redevelopment of skin-friction, strain was measured on an instrumented micropile during a blast-induced liquefaction test in Mirabello, Italy. The soil profile where the micropile was installed consisted of clay to a depth of 6m underlain by a medium to dense sand. The 25cm diameter steel reinforced concrete micropile was bored to a depth of 17m. Pore pressure transducers were placed around the pile at various depths to observe excess pore pressure generation and dissipation. Soil strain was monitored with profilometers in a linear arrangement from the center of the 10m diameter ring of buried explosives out to a 12m radius. Immediately following the blast, liquefaction developed between 6m and 12m below ground. The liquefied layer settled 14cm (~2.4% volumetric strain) while the pile toe settled 1.24cm under elastic displacement. The static neutral plane in the pile occurred at a depth of 12m. From 6m to 12m below ground, the incremental skin-friction was 50% compared to pre-liquefaction measurements. The decrease in residual skin-friction is consistent with measurements observed by Dr. Kyle Rollins from previous full-scale tests in Vancouver, BC, Canada, Christchurch, New Zealand, and Turrel, Arkansas.

Page generated in 0.0297 seconds