• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Driven piles in central Texas expansive soils

Signor, Clayton Avery 15 February 2012 (has links)
Expansive soils cause more damage to structures annually than a combination of other major natural disasters. Because of the cost to our society, all means and methods need to be fully explored to mitigate the problems associated with expansive soils. This study will present a foundation design approach that is under utilized in this application, driven piles. The main objective of the study is to present pile test results and analysis from four driven pile project sites in three types of expansive soils found in central Texas: Del Rio formation, Taylor/Navarro formation, and expansive alluvium. Observations of the pile driving operations will be reported to highlight pile design considerations like predrilling and open versus close-ended pipe piles and the type of equipment involved. High strain dynamic pile tests were conducted on each of the four studies with rigorous signal matching analysis from the CAse Pile Wave Analysis Program (CAPWAP). Ultimate pile capacities ranged from 73 to 311 kips with an average of 61% of the total capacity coming from the pile shaft and were two to six times the structural capacity needed. Static design methods under-predicted, dynamic formulas over-predicted, and wave equation analysis conducted with GRLWEAP closely modeled test results. Average unit skin frictions ranged from 0.55 to 4.7 ksf. Restrike pile tests of 1 to 17 days after initial driving reported 30 to 100% shaft capacity gain. All open-ended pipe piles driven produced soil plugs ranging from 4 to 14 feet thick, and it was observed that harder driving conditions produced thinner soil plug thicknesses. Small diameter, thick-walled, open-ended pipe piles reached penetration of twice the depth of designated zone of seasonal moisture change without problem. The observed production rate of the driven piles was on average 8 minutes which implied daily production of 15 to 40 piles. Predrills or augered holes should be specified for underground obstructions found in soil investigation. Future studies on pile-supported foundations should measure localized movement correlated with seasonal moisture changes in expansive soil, or active zone, to confirm long-term performance. Also uplift forces need to be observed from tests on fully-instrumented and loaded driven piles to determine required pile embedment length below the active zone to withstand movement. / text
2

Assessing Driven Steel Pile Capacity on Rock Using Empirical Approaches

Morton, Timothy Scott 17 August 2012 (has links)
Methods of determining pile toe capacity for both small displacement driven steel piles and drilled sockets were collected. Working in conjunction with a local consulting firm, records of previous pile driving sites were collected. A process to determine quality data for use in this work was developed by the author including information from geotechnical site investigations, pile driving records and pile driving analysis records. By plotting unconfined compressive strength of rock versus measured ultimate pile toe capacity of these piles, a best fit line of 7.5qu and a series of confidence intervals were established for the site records. This best fit line was compared to all of the previously reviews design methods for calculating ultimate pile toe capacity. Rehnman and Broms (1971) was determined to be the most effective existing method while most of the methods for drilled sockets were overly conservative when applied to small displacement driven steel piles.
3

Full-Scale Testing of Blast-Induced Liquefaction Downdrag on Driven Piles in Sand

Kevan, Luke Ian 01 July 2017 (has links)
Deep foundations such as driven piles are often used to bypass liquefiable layers of soil and bear on more competent strata. When liquefaction occurs, the skin friction around the deep foundation goes to zero in the liquefiable layer. As the pore pressures dissipate, the soil settles. As the soil settles, negative skin friction develops owing to the downward movement of the soil surrounding the pile. To investigate the magnitude of the skin friction along the shaft three driven piles, an H-pile, a closed end pipe pile, and a concrete square pile, were instrumented and used to measure soil induced load at a site near Turrell, Arkansas following blast-induced liquefaction. Measurements were made of the load in the pile, the settlement of the ground and the settlement of piles in each case. Estimates of side friction and end-bearing resistance were obtained from Pile Driving Analyzer (PDA) measurements during driving and embedded O-cell type testing. The H-pile was driven to a depth of 94 feet, the pipe pile 74 feet, and the concrete square pile 72 feet below the ground surface to investigate the influence of pile depth in response to liquefaction. All three piles penetrated the liquefied layer and tipped out in denser sand. The soil surrounding the piles settled 2.5 inches for the H-pile, 2.8 inches for the pipe pile and 3.3 inches for the concrete square pile. The piles themselves settled 0.28 inches for the H-pile, 0.32 inches for the pipe pile, and 0.28 inches for the concrete square pile. During reconsolidation, the skin friction of the liquefied layer was 43% for the H-pile, 41% for the pipe pile, and 49% for the concrete square pile. Due to the magnitude of load felt in the piles from these tests the assumption of 50% skin friction developing in the liquefied zone is reasonable. Reduced side friction in the liquefied zone led to full mobilization of skin friction in the non-liquefied soil, and partial mobilization of end bearing capacity. The neutral plane, defined as the depth where the settlement of the soil equals the settlement of the pile, was outside of the liquefied zone in each scenario. The neutral plane method that uses mobilized end bearing measured during blasting to calculate settlement of the pile post liquefaction proved to be accurate for these three piles.
4

Uma nova metodologia de extrapolação dos dados da prova de carga dinâmica: MES-CASE / A new method of extrapolating data from the dynamic laod test: MES-CASE

ALVES, éder Chaveiro 26 February 2010 (has links)
Made available in DSpace on 2014-07-29T15:18:26Z (GMT). No. of bitstreams: 1 PRE TEXTO DISSERTACAO EDER.pdf: 124262 bytes, checksum: 341b7782cf7b9bd27e25fca751a05985 (MD5) Previous issue date: 2010-02-26 / Since 1983, when the experiment of dynamic load has been plunged in Brazil, the execution of this kind of experiment has become a common practice in foundation sites on precast inserted piles. In many cases the experiment of dynamic load doesn t mobilize the ultimate strength of the tested pile; the causes of these events may be due to: the available equipment at the site isn t capable of obtaining enough kinetic energy to mobilize the ultimate strength; the structural element presents ruptures; the client desire of not mobilizing all the ultimate strength; among others. Knowing the necessity of determining the ultimate strength in order to adapt the construction to the security factors required by NBR 6122/1996, this essay pursuits developing a methodology of extrapolation of the curve of mobilized static resistance versus the maximum displacement obtained through the dynamic load proof (dynamic load experiment of crescent energy), applying the Simplified Method CASE, to inserted precast piles. Studying 21 (twenty-one) proofs of dynamic load (PDL), an extrapolation methodology has been developed entitled as Simplified Extrapolation Methodology of CASE Method (SEM-CASE). The methodology is based on the criteria of complementary energy, presented by Aoki in 1997. The results have demonstrated that the method SEM-CASE has presented itself as easy manipulation. The estimated values of ultimate complementary strength calculated by the SEM-CASE has presented pretty close to the measured values, existing only one pile which presented a value error bigger than 10%. The estimated values of ultimate pile strength, obtained by the SEM-CASE, showed themselves similar to the measured values, also having a value error inferior to 10%. The exponential function has obtained better results of adjustment coefficient (R2) related to the points of the curve of mobilized static resistance versus the maximum displacement measured in the dynamic load proof. Besides, applying model selection criteria was obtained that the exponential function is more efficient to estimate the curve of mobilized static resistance versus the maximum displacement than the hyperbolic and parabolic functions. / Desde 1983, quando o ensaio de carregamento dinâmico foi introduzido no Brasil, a execução deste tipo de ensaio vem se tornando uma prática comum em obras de fundação em estacas de concreto pré-moldado cravadas. Em vários casos o ensaio de carregamento dinâmico não mobiliza a resistência última da estaca ensaiada, as causas desses eventos podem ser devido a: o equipamento disponível na obra não é capaz de obter energia cinética necessária para mobilizar a resistência última; o elemento estrutural apresenta rupturas; o cliente não desejar mobilizar toda resistência última; entre outros motivos. Sabendo a necessidade da determinação da resistência última, para a adequação da obra com os fatores de segurança exigidos pela NBR 6122/1996, este trabalho procura desenvolver uma metodologia de extrapolação da curva resistência estática mobilizada versus deslocamento máximo obtida pela prova de carga dinâmica (ensaio de carregamento dinâmico de energia crescente), empregando o Método Simplificado CASE, para estacas de concreto pré-moldado cravadas. Por meio de estudos de 21 (vinte e uma) provas de carga dinâmica (PCD), desenvolveu-se uma metodologia de extrapolação intitulada como Método de Extrapolação Simplificado do Método CASE (MES-CASE). A metodologia é baseada no critério da energia complementar, apresentada por Aoki em 1997. Os resultados demonstraram que o método MES-CASE apresentou-se de fácil manuseio. Os valores estimados de energia complementar última, calculados pelo método MES-CASE, apresentaram-se bem próximos dos valores medidos, havendo apenas uma estaca que apresentou valor de erro maior que 10%. Os valores estimados de resistência estática última, obtidos pelo método MES-CASE, mostraram-se semelhantes aos valores medidos, tendo também um erro inferior a 10%. A função exponencial obteve os melhores resultados de coeficiente de ajuste (R2) em relação aos pontos da curva resistência estática mobilizada versus deslocamento máximo medidos na prova de carga dinâmica. Além disso, empregando critérios de seleção de modelo obteve-se que a função exponencial é mais eficaz para estimar a curva resistência estática mobilizada versus deslocamento máximo do que as funções hiperbólica e parabólica.
5

Zajištění stavební jámy a založení objektu SONO v Brně / Sekuring of Foundation Pit in Brno

Ondráček, Jaroslav January 2012 (has links)
It is project of securing foundation pit and foundation for SONO building realized in Brno in Veveří street. It is required to desing economical and safety construction.A calculation was performed by program FINE GEO 5 - Student version.

Page generated in 0.0468 seconds