Return to search

Understanding Drug Resistance and Antibody Neutralization Escape in Antivirals: A Dissertation

Antiviral drug resistance is a major problem in the treatment of viral infections, including influenza and hepatitis C virus (HCV). Influenza neuraminidase (NA) is a viral sialidase on the surface of the influenza virion and a primary antiviral target in influenza. Two subtypes of NA predominate in humans, N1 and N2, but different patterns of drug resistance have emerged in each subtype. To provide a framework for understanding the structural basis of subtype specific drug resistance mutations in NA, we used molecular dynamics simulations to define dynamic substrate envelopes for NA to determine how different patterns of drug resistance have emerged in N1 and N2 NA. Furthermore, we used the substrate envelope to analyze HCV NS3/4A protease inhibitors in clinical development. In addition, influenza hemagglutinin (HA) is a primary target of neutralizing antibodies against influenza. Novel broadly neutralizing antibodies (BnAbs) against the stem region of HA have been described and inhibit several influenza viral subtypes, but antibody neutralization escape mutations have emerged. We identified potential escape mutations in broadly neutralizing antibody F10 that may impact protein dynamics in HA that are critical for function. We also solved crystal structures of antibody fragments that are important for understanding the structural basis of antibody binding for influenza BnAbs. These studies can inform the design of improved therapeutic strategies against viruses by incorporating an understanding of structural elements that are critical for function, such as substrate processing and protein dynamics, into the development of novel therapeutics that are robust against resistance.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1862
Date06 April 2016
CreatorsPrachanronarong, Kristina L.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0015 seconds