Return to search

Low-Power UAV Detection Using Spiking Neural Networks and Event Cameras

The growing availability of UAVs has created a demand for drone detection systems. Several studies have used neuromorphic cameras to detect UAVs; however, a fully neuromorphic system remains to be explored. We present a fully neuromorphic system consisting of an event camera and a spiking neural network running on neuromorphic hardware. Two spiking neural network architectures have been evaluated and compared to a non-spiking artificial neural network. The spiking networks show promise and perform on par with the non-spiking network in a few scenarios. Spiking networks were deployed on the Synsense Speck, a neuromorphic system on a chip, and demonstrated increased performance compared to simulations. The deployed network is capable of detecting drones up to a distance of 20 meters with high probability while consuming less than 7.13 milliwatts. The system can operate for over a year powered by a small power bank. In contrast, the equivalent non-spiking network running on the NVIDIA Jetson would operate for a few hours. The use of neuromorphic hardware enables sustained UAV detection in remote and challenging environments previously deemed inaccessible due to power constraints.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-204179
Date January 2024
CreatorsEldeborg Lundin, Anton, Winzell, Rasmus
PublisherLinköpings universitet, Datorseende
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds