L'objectif de ce travail de thèse est le développement d'une approximation polynomiale axiale dans un solveur basé sur la Méthode des Caractéristiques. Le contexte, est celui de la solution stationnaire de l'équation de transport des neutrons pour des systèmes critiques, et l'implémentation pratique a été réalisée dans le solveur "Two/three Dimensional Transport" (TDT), faisant partie du projet APOLLO3®. Un solveur MOC pour des géométries en trois dimensions a été implémenté dans ce code pendant un projet de thèse antécédent, se basant sur une approximation constante par morceaux du flux et des sources des neutrons. Les développements présentés dans la suite représentent la continuation naturelle de ce travail. Les solveurs MOC en trois dimensions sont capables de produire des résultats précis pour des géométries complexes. Bien que précis, le coût computationnel associé à ce type de solveur est très important. Une représentation polynomiale en direction axiale du flux angulaire des neutrons a été utilisée pour réduire ce coût computationnel.Le travail réalisé pendant cette thèse peut être considéré comme divisé en trois parties: transport, accélération et autres. La première partie est constituée par l'implémentation de l'approximation polynomiale choisie dans les équations de transmission et de bilan typiques de la Méthode des Caractéristiques. Cette partie a aussi été caractérisée par le calcul d'une série de coefficients numériques qui se sont révélés nécessaires afin d'obtenir un algorithme stable. Pendant la deuxième partie, on a modifié et implémenté la solution des équations de la méthode d'accélération DPN. Cette méthode était déjà utilisée pour l'accélération et des itérations internes et externes dans TDT pour les solveurs deux et trois dimensionnels avec l'approximation des flux plat, quand ce travail a commencé. L'introduction d'une approximation polynomiale a demandé plusieurs développements numériques regardant la méthode d'accélération. Dans la dernière partie de ce travail on a recherché des solutions pour un mélange de différents problèmes liés aux premières deux parties. En premier lieux, on a eu à faire avec des instabilités numériques associées à une discrétisation spatiale ou angulaire pas suffisamment précise, soit pour la partie transport que pour la partie d'accélération. Ensuite, on a essayé d'utiliser différentes méthodes pour réduire l'empreinte mémoire des coefficients d'accélération. L'approche qu'on a finalement choisie se base sur une régression non-linéaire au sens des moindres carrés de la dépendance en fonction des sections efficaces typique de ces coefficients. L'approche standard consiste dans le stockage d'une série de coefficients pour chaque groupe d'énergie. La méthode de régression permet de remplacer cette information avec une série de coefficients calculés pendant la régression qui sont utilisés pour reconstruire les matrices d'accélération au cours des itérations. Cette procédure ajoute un certain coût computationnel à la méthode, mais nous pensons que la réduction de la mémoire rende ce surcoût acceptable.En conclusion, le travail réalisé a été concentré sur l'application d'une simple approximation polynomiale avec l'objectif de réduire le coût computationnel et l'empreinte mémoire associées à un solveur basée sur la Méthodes des Caractéristiques qui est utilisé pour calculer le flux neutroniques pour des géométries à trois dimensions extrudées. Même si cela ne constitue pas une amélioration radicale des performances, l'approximation d'ordre supérieur qu'on a introduit permet une réduction en termes de mémoire et de temps de calcul d'un facteur compris entre 2 et 5, selon le cas. Nous pensons que ces résultats constitueront une base fertile pour des futures améliorations. / The purpose of this PhD is the implementation of an axial polynomial approximation in a three-dimensional Method Of Characteristics (MOC) based solver. The context of the work is the solution of the steady state Neutron Transport Equation for critical systems, and the practical implementation has been realized in the Two/three Dimensional Transport (TDT) solver, as a part of the APOLLO3® project. A three-dimensional MOC solver for 3D extruded geometries has been implemented in this code during a previous PhD project, relying on a piecewise constant approximation for the neutrons fluxes and sources. The developments presented in the following represent the natural continuation of this work. Three-dimensional neutron transport MOC solvers are able to produce accurate results for complex geometries. However accurate, the computational cost associated to this kind of solvers is very important. An axial polynomial representation of the neutron angular fluxes has been used to lighten this computational burden.The work realized during this PhD can be considered divided in three major parts: transport, acceleration and others. The first part is constituted by the implementation of the chosen polynomial approximation in the transmission and balance equations typical of the Method Of Characteristics. This part was also characterized by the computation of a set of numerical coefficients which revealed to be necessary in order to obtain a stable algorithm. During the second part, we modified and implemented the solution of the equations of the DPN synthetic acceleration. This method was already used for the acceleration of both inners and outers iteration in TDT for the two and three dimensional solvers at the beginning of this work. The introduction of a polynomial approximation required several equations manipulations and associated numerical developments. In the last part of this work we have looked for the solutions of a mixture of different issues associated to the first two parts. Firstly, we had to deal with some numerical instabilities associated to a poor numerical spatial or angular discretization, both for the transport and for the acceleration methods. Secondly, we tried different methods to reduce the memory footprint of the acceleration coefficients. The approach that we have eventually chosen relies on a non-linear least square fitting of the cross sections dependence of such coefficients. The default approach consists in storing one set of coefficients per each energy group. The fit method allows replacing this information with a set of coefficients computed during the regression procedure that are used to re-construct the acceleration matrices on-the-fly. This procedure of course adds some computational cost to the method, but we believe that the reduction in terms of memory makes it worth it.In conclusion, the work realized has focused on applying a simple polynomial approximation in order to reduce the computational cost and memory footprint associated to a Method Of Characteristics solver used to compute the neutron fluxes in three dimensional extruded geometries. Even if this does not a constitute a radical improvement, the high order approximation that we have introduced allows a reduction in terms of memory and computational times of a factor between 2 and 5, depending on the case. We think that these results will constitute a fertile base for further improvements.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS389 |
Date | 16 October 2018 |
Creators | Graziano, Laurent |
Contributors | Université Paris-Saclay (ComUE), Mazzolo, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds