La ecuación del transporte neutrónico describe la población de neutrones y las reacciones nucleares dentro de un reactor nuclear. Primero, introducimos esta ecuación y las aproximaciones de la misma. Entonces, estudiamos la ecuación de la difusión neutrónica, la aproximación al transporte más utilizada. Para el caso estacionario, esta aproximación da lugar a un problema diferencial de valores propios. Para resolver la ecuación de la difusión se ha desarrollado un método de elementos finitos h-p. Para mejorar la eficiencia del método se ha implementado un precondicionador del tipo Restricted Additive Schwarz.
Una vez hemos obtenido la distribución neutrónica en estado estacionario, usamos esta solución como condición inicial para integrar la ecuación de la difusión. Para probar el comportamiento del método propuesto, hemos simulado numéricamente ejecciones accidentales de barras de control. Sin embargo, cuando una celda tiene parcialmente introducida una barra de control aparece un comportamiento no físico, el efecto rod cusping. Para mitigar este efecto proponemos un esquema de malla móvil, es decir, la malla sigue el movimiento de las barras de control. Los resultados muestran que el efecto rod cusping disminuye con el esquema expuesto.
Después, desarrollamos la aproximación de armónicos esféricos simplificados, SPN, para simular el comportamiento del núcleo del reactor el problema en estado estacionario. Esta aproximación extiende los armónicos esféricos en geometrías unidimensionales, PN, a geometrías multidimensionales usando fuertes aproximaciones. Las ecuaciones SPN mejoran la teoría de la difusión pero no convergen cuando N tiende a infinito. Probamos las ventajas y limitaciones de esta aproximación en diversos reactores.
Finalmente, estudiamos la homogenización espacial en el contexto de los elementos finitos. La homogenización consiste en cambiar subdominios heterogéneos por homogéneos, de forma que el problema homogeneizado da eficientemente resultados promedios. La Teoría Generalizada de la Equivalencia para la homogenización propone factores de discontinuidad. Así pues, se ha introducido un método de elementos finitos de Galerkin discontinuo donde la condición de discontinuidad se impone de forma débil usando términos de penalización. También, hemos investigado el uso de factores de discontinuidad para la corrección de errores de homogenización cuando se usan la ecuaciones SPN. / The neutron transport equation describes the neutron population and the nuclear reactions inside a nuclear reactor core. First, this equation is introduced and its assumptions are stated. Then, the stationary neutron diffusion equation which is the most useful approximation of this equation, is studied. This approximation leads to a differential eigenvalue problem. To solve the neutron diffusion equation, a h-p finite element method is investigated. To improve the efficiency of the method a Restricted Additive Schwarz preconditioner is implemented.
Once the solution for the steady state neutron distribution is obtained, it is used as initial condition for the time integration of the neutron diffusion equation. To test the behaviour of the method, rod ejection accidents are numerically simulated. However, a non-physical behaviour appears when a cell is partially rodded: this is, the rod cusping effect, which is solved by using a moving mesh scheme. In other words, the mesh follows the movement of the control rod. Numerical results show that the rod cusping effect is corrected with this scheme.
After that, the simplified spherical harmonics approximation, SPN, is developed to solve the steady state problem. This approximation extends the spherical harmonics approximation, PN, in one dimensional geometries to multidimensional geometries with strong assumptions. It improves the diffusion theory results but does not converge as N tends to infinity. The advantages and limitations of this approximation are tested on several one-, two- and three-dimensional reactors.
Finally, the spatial homogenization in the context of the finite element method is studied. Homogenization consists in replacing heterogeneous subdomains by homogeneous ones, in such a way that the homogenized problem provides fast and accurate average results. Discontinuous solutions were proposed in the Generalized Equivalence Theory. Here, a discontinuous Galerkin finite element method where the jump condition for the neutron flux is imposed in a weak sense using interior penalty terms is introduced. Also, the use of discontinuity factors for the correction of the homogenization error when using the SPN equations is investigated. / L'equació del transport neutrònic descriu la població de neutrons i les reaccions nuclears dins del nucli d'un reactor nuclear. Primer, introduïm aquesta equació i les seues principals aproximacions. Aleshores, estudiem l'equació de la difusió neutrònica, l'aproximació al transport neutrònic més utilitzada. Aquesta equació genera un problema diferencial de valors propis. Per a resoldre l'equació de la difusió s'ha desenvolupat un mètode d'elements finits h-p. Per millorar l'eficiencia del mètode s'ha implementat un precondicionador del tipus Restricted Additive Schwarz.
Una vegada hem obtingut la distribució neutrònica en estat estacionari, usem aquesta solució com a condició inicial per integrar l'equació de la difusió depenent del temps. Amb la voluntat de provar el comportament del mètode proposat, hem simulat numèricament expusions accidentals de barres de control. Però, quan un node té parcialment introduïda una barra de control apareix un comportament no físic, l'efecte rod cusping. Per mitigar aquest efecte proposem un esquema de malla mòbil, és a dir, la malla segueix el moviment de les barres de control. Els resultats numèrics mostren que l'efecte rod cusping disminueix amb l'esquema exposat.
Després, desenvolupem l'aproximació d'harmònics esfèrics simplificats, SPN, per a resoldre el problema en estat estacionari. Aquesta equació estén l'aproximació d'harmònics esfèrics en geometries unidimensionals, PN, a geometries multidimensionals usant fortes aproximacions. Les equacions SPN milloren la teoria de la difusió però no convergeixen quan N tendeix a infinit. Provem els avantatges i limitacions d'aquesta aproximació en diversos reactors.
Finalment, estudiem l'homogeneïtzació espacial en el context dels elements finits. L'homogeneïtzació consisteix en canviar subdominis heterogenis per homogenis, de forma que el problema homogeneïtzat dóna eficientment resultats mitjos. La Teoria Generalitzada de l'Equivalència per a l'homogeneïtzació proposa factors de discontinuïtat. Així, s'ha introduït un mètode d'elements finits de Galerkin discontinu on la condició de discontinuïtat per al flux neutrònic s'imposa de forma dèbil usant termes de penalització. També, hem investigat l'ús de factors de discontinuïtat per a la correcció dels errors d'homogeneïtzació quan usen les equacions SPN. / Vidal Ferràndiz, A. (2018). Development of a finite element method for neutron transport equation approximations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/98522
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/98522 |
Date | 27 February 2018 |
Creators | Vidal Ferràndiz, Antoni |
Contributors | Ginestar Peiro, Damián, Verdú Martín, Gumersindo Jesús, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds