Der Reaktordruckbehälter (RDB) zählt zu den nicht auswechselbaren Komponenten eines Kernkraftwerkes (KKW). Durch die hohen Neutronen- und Gammaflüsse ist er beschleunigten Alterungsprozessen unterworfen, welche die Lebensdauer eines KKW bestimmen könnten. So haben neben der chemischen Zusammensetzung des RDB-Stahls vor allem die Strahlungsparameter (Neutronen- und Gammafluenzen und deren Spektren) Auswirkungen auf die Versprödungseigenschaften des RDB.
Für einen sicheren Betrieb eines KKW ist es daher sehr wichtig, die mögliche Änderung des Materialzustandes vom RDB im Voraus bewerten zu können. Die sogenannten Voreilprobenprogramme gehören deshalb zu den wichtigsten Überwachungsmaßnahmen im KKW. Mit ihnen kann die Restlebensdauer des RDB realistisch und zuverlässig beurteilt werden.
In dieser Arbeit werden, neben der Bestimmung der Fluenzen an sich, auch Auswirkungen auf den Teilchenfluss in den Voreilproben, wie zum Beispiel die verschiedenen geometrischen Positionen, untersucht. Damit können mögliche Unsicherheiten bei der Bestimmung der realen Fluenzwerte abgeschätzt werden. Die Berechnungen wurden sowohl mit dem Code TRAMO als auch mit dem Code DORT durchgeführt.
Die berechneten Ergebnisse wurden an Aktivierungsmonitoren, die an der RDBAußenoberfläche des KKW Kola, Unit 3 (WWER-440/213), bestrahlt wurden, überprüft. Hauptsächlich kamen Aktivierungsmonitore mit den Reaktionen 54Fe(n,p)54Mn und 58Ni(n,p)58Co zum Einsatz. Die Aktivitätsmessungen wurden vom russischen Partner, dem „Scientific and Engineering Centre for Nuclear and Radiation Safety“ (SEC NRS) durchgeführt. Es konnte gute Übereinstimmung sowohl zwischen den deterministischen und den stochastischen Berechnungsergebnissen als auch zwischen den berechneten und gemessenen Ergebnissen erzielt werden. Die durchschnittliche Differenz zwischen gemessenen und berechneten Werten betrug nur 5%. Ein Einfluss der Bestrahlungskanäle
und der Versteifungsrippen der Kernumfassung auf die Monitoraktivität konnte festgestellt werden. Für die Voreilproben im Bereich des Flussmaximums wurden für den Neutronenfluss E> 0.5 MeV ein Mittelwert von rund 2.45*1012 Neutronen/cm2 berechnet. Dabei können die Unterschiede in Abhängigkeit von der Ausrichtung der Proben zum Reaktorkern bis zu 20% betragen. Abweichungen bis zu 10% können durch die Änderung der Position der Bestrahlungskapseln im Kanal entstehen. Auf Basis dieser Rechnungen wurden die Voreilfaktoren der Bestrahlungsproben bestimmt. Bei mittleren Zykluslängen würde die „End of Life“-Fluenz in den Bestrahlungsproben bereits nach 2 Jahren erreicht werden.
Der berechnete maximale Gammafluss beträgt rund 3.4*1012 g/cm2s für E > 1.0 MeV und rund 8.4*1012 g/cm2s für E > 0.5 MeV, wobei der größte Anteil des Flusses (rund 97%) aus Neutronenreaktionen stammt. Damit sind die Gammaflüsse in den Proben zwei bis drei Mal so groß wie die der Neutronen. Trotzdem spielt die Materialschädigung durch die Gammastrahlung eine untergeordnete Rolle, da die DPAQuerschnitte (displacement per atom) von Gammas um etwa zwei bis drei Größenordnungen kleiner sind.
Des Weiteren wurde untersucht, ob mögliche Ausheilprozesse durch zu hohe Temperaturen in den Bestrahlungsproben stattfinden könnten. Zu diesem Zweck wurde der Energieeintrag in den Bestrahlungsproben basierend auf den berechneten Teilchenflüssen bestimmt und mit einfachen thermohydraulischen Modellen die mögliche Aufheizung ermittelt. Eine Temperaturerhöhung von rund 20 K wurde mit einem konservativen Ansatz berechnet. Unter vergleichsweise realistischen Bedingungen reduzierte sich die Aufheizung auf unter 5 K. / Reactor pressure vessels (RPV) are non-restorable equipment and their lifetime may restrict the nuclear power plant-life as a whole. Surveillance specimen programs for RPV materials are among the most important measures of in-service inspection pro-grams that are necessary for realistic and reliable assessment of the RPV residual lifetime. In addition to the chemical composition of the RPV steel, the radiation pa-rameters (neutron and gamma fluences and spectra) have the most important impact on the RPV embrittlement characteristics.
In this work, different geometric positions which have influence on the radiation conditions of the samples are investigated. Thus, the uncertainties can be determined in the fluence values of surveillance specimens. The fluence calculations were carried out by the codes TRAMO and DORT. This study was accompanied by ex-vessel neutron dosimetry experiments at Kola NPP, Unit 3 (VVER-440/213), which provide the basis for validation of calculated neutron fluences. The main neutron-activation monitoring reactions were 54Fe(n,p)54Mn and 58Ni(n,p)58Co. The activity measurements were carried out by “Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS).
Good agreement between the deterministic and stochastic calculation results as well as between the calculations and the ex-vessel measurements was found. The aver-age difference between measured and calculated values is 5%. The influence of the channels for surveillance specimens and the shielding effect of a baffle rib on the monitors and on the Monte-Carlo calculated results was studied.
For the surveillance specimens in the maximum of the flux, an average flux of around 2.45 * 1012 neutrons/cm2 was calculated for the neutron flux E> 0.5 MeV. The differences in the surveillance specimens could be up to 20% depending on the direction to the core. Discrepancies up to 10% can be caused by the change of the position of the capsules in the irradiation channel. Based on these calculations the lead factor of specimens was determined. The maximum fluence of RPV may be achieved after two cycles.
The calculated maximum gamma flux is around 3.4 * 1012 g/cm2s for E> 1.0 MeV and around 8.4 * 1012 g/cm2s for E> 0.5 MeV, with the largest part of the flux (around 97%) from the neutron reactions. The gamma fluxes in the surveillance specimens are two to three times bigger than the neutron fluxes. Nevertheless, the material damage by the gamma radiation is very small, because the dpa (displacement per atom) cross sections of gamma rays are about two to three orders of magnitude smaller.
In order to exclude the possibility of healing effects of the samples due to excessive temperatures, the heat release in the surveillance specimens was determined based on the calculated gamma fluences. The analytic treatment of the heat conduction equation and simplified SS geometries were adopted to calculate the range of tem-peratures to be expected. The temperature increase of 20 K above the inlet coolant temperature was estimated using a conservative approach. Under comparatively re-alistic conditions, the heating was reduced to less than 5 K.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22217 |
Date | January 2014 |
Creators | Konheiser, Jörg, Grahn, Alexander |
Publisher | Helmholtz-Zentrum Dresden-Rossendorf |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:d120-qucosa-237182, qucosa:22349 |
Page generated in 0.0026 seconds