Mathematische Programme mit Gleichgewichtsrestriktionen (oder Komplementaritätsbedingungen), kurz MPECs, sind als äußerst schwere Optimierungsprobleme bekannt. Lokale Minima oder geeignete stationäre Punkte zu finden, ist ein nichttriviales Problem. Diese Arbeit beschreibt, wie man dennoch die spezielle Struktur von MPECs ausnutzen kann und mittels eines Branch-and-Bound-Verfahrens ein globales Minimum von Linearen Programmen mit Gleichgewichtsrestriktionen, kurz LPECs, bekommt. Des Weiteren wird dieser Branch-and-Bound-Algorithmus innerhalb eines Filter-SQPEC-Verfahrens genutzt, um allgemeine MPECs zu lösen. Für das Filter-SQPEC Verfahren wird ein globaler Konvergenzsatz bewiesen. Außerdem werden für beide Verfahren numerische Resultate angegeben. / Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, are known to be very difficult optimization problems. Finding local minima or suitable stationary points is a highly nontrivial task. On the other hand, taking into account the special structure of MPECs, this thesis describes a branch-and-bound-type algorithm for the computation of a global minimum of linear programs with equilibrium constraints, LPECs for short. Furthermore this branch-and-bound-type algorithm is used within a filter-SQPEC algorithm to solve the general MPEC. For the filter-SQPEC algorithm, a global convergence theorem is proven. Numerical results are presented for both methods.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3211 |
Date | January 2009 |
Creators | Teichert, Christian |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds