Nitric oxide (NO) regulates a wide range of plant processes from development toenvironmental adaptation. In this study, NO production and its effects were investigated in aplant-pathogen context. The production of NO following Arabidopsis treatment witholigogalacturonides (OGs), an endogenous elicitor of plant defense, was assessed using the NOsensitive probe 4, 5-diamino fluorescein diacetate. Pharmacological and genetic approaches wereused to analyze NO enzymatic sources and its role in the Arabidopsis thaliana /Botrytis cinereainteraction. We showed that NO production involves both a L-arginine- and a nitrate reductase(NR)-pathways. OGs-induced NO production was Ca2+-dependent and modulated RBOHDmediatedROS production. NO production was also regulated by CDPKs activities, but workedindependently of the MAPKs pathway. Using a transcriptomic approach, we further demonstratedthat NO participates to the regulation of genes induced by OGs such as genes encoding diseaserelatedproteins and transcription factors. The over-representation of certain regulatory elements(e.g. W-BOX) in promoter sequences of target genes also suggests the involvement of specifictranscription factors in the NO response. Mutant plants impaired in several selected NOresponsivegenes, as well as Col-0 plants treated with the NO scavenger cPTIO, were moresusceptible to B. cinerea. Taken together, our investigation deciphers part of the mechanismslinking NO production, NO-induced effects and basal resistance to Botrytis cinerea. Moregenerally, our data reinforce the concept that NO is a key mediator of plant defense responses
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00866896 |
Date | 21 December 2011 |
Creators | Rasul, Sumaira |
Publisher | Université de Bourgogne |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds