The depth of constructed wetlands (CWs) significantly affects the construction investment that influences the efficiency of the CW and is an important design consideration for optimal performance. The aim of the study was to examine the influence of depth on nitrogen retention in 12 pilot scale free surface water CWs in Plönninge (56◦43 45 N, 12◦43 33 E): 6 shallow wetlands with a maximum depth of 0.5 m and 6 deeper wetlands with a maximum depth of 0.8 m. The outlet N concentration in shallow and deep wetlands were found to be significantly different (p<0.05, p= 0.017). Outlet N concentration over the months June to December in deep and shallow wetlands, was found to be significantly different (F (6,60 = 20.594, p< 0.05). and the N concentration in deep and shallow wetlands was significantly different (F (1,10) = 8.087, p<0.05). The N concentration in September was found to be significantly different from those in all other months. The first order rate constant k was calculated for shallow and deep wetlands; higher k value indicates higher nitrogen retention. The deeper wetlands had higher k values than shallow wetlands and was statistically different (p<0.05, p= 0.002) from the k values for shallow wetlands. This implies that the N retention was higher in deeper wetlands than in shallow and was the highest in September. This was most likely due to the effect of temperature and vegetation in the wetlands.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-35907 |
Date | January 2017 |
Creators | Thomas, Jes |
Publisher | Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds