Return to search

Combinaison de la microscopie de fluorescence X et de l'imagerie X par contraste de phase pour l'imagerie clinique sub-cellulaire

Ce travail de thèse présente une combinaison unique d'imagerie X par contraste de phase avec la fluorescence X pour des échantillons biologiques étudiés par nanosonde par fluorescence X excitée par le rayonnement synchrotron. Les récents développements dans ce domaine ouvrent la possibilité d'une imagerie chimique quantitative à l'échelle sub-cellulaire. Ceci a été rendu possible par l'utilisation d'un outil unique qui est la station de nanoimagerie X ID22NI de l'ESRF qui permet de délivrer un faisceau sub-100 nm avec un très haut flux à haute énergie entrainant une sensibilité très haute, de l'ordre de quelques centaines d'atomes pour différents éléments (Fe, Cu, Zn...). Le couplage des informations issues de l'imagerie X par contraste de phase (masse surfacique de la cellule) et de la fluorescence X (masse surfacique des éléments chimiques) a pu être obtenu pour la première fois donnant accès à une cartographie des éléments chimiques constituant les cellules et de leurs fractions massiques absolues associées. Dans l'immédiat, il n'a été possible d'étudier des cellules qui ont été congelées rapidement puis lyophilisées, cependant, une nouvelle ligne de nanoimagerie, NINA, en construction à l'ESRF, fonctionnera comme un cryomicroscope et permettra l'analyse 2D/3D d'échantillons biologiques ou non congelés hydratés. L'extension de l'imagerie chimique 2D présentée dans ce travail à une imagerie 3D représente une importante avancée pour bon nombre de problématiques scientifiques en biologie. Une des limitations de ce type d'analyse est celle des dommages radio-induits à la suite de l'irradiation de l'échantillon par un haut flux de particules ionisantes. Il existe que peu ou pas d'étude sur les effets de la nanoanalyse par fluorescence X sur les cellules lyophilisées. Nous avons combiné l'imagerie de phase à l'imagerie par fluorescence X ce qui nous permis de conclure à une rétractation des structures cellulaires accompagnée d'une volatilisation des éléments du fait de l'irradiation lors de l'analyse par fluorescence X. Ces aspects ont été confortés par des analyses utilisant une technique complémentaire non-synchrotron de microscopie ionique en transmission et à balayage (STIM). Plus important encore, nous apportons ainsi un outil rapide et non-destructif pour la cellule (imagerie X de phase) qui permet de corriger la perte de masse due à la volatilisation d'éléments légers (C, H, O, N) de la matrice cellulaire. Cette démarche permet de fiabiliser l'analyse quantitative de la composition chimique cellulaire. Cette approche sera précieuse pour corriger ces effets de perte de masse lors de futures analyses tomographiques de cellules entières congelées hydratées. Nous avons également contribué à l'étude de distribution intracellulaire de nouvelles nanoparticules d'or ou de platine fonctionnalisées. Nous avons pu exploiter les données issues de la fluorescence X pour estimer le nombre de nanoparticules et la taille des clusters internalisés au sein des cellules. Toutefois, des expériences dédiées pour des analyses sur un plus grand nombre de cellules auxquelles l'imagerie X par contraste de phase serait menée en parallèle permettraient surement de préciser plus finement ces aspects quantitatifs sur le nombre de nanoparticules intracellulaires. Dans l'ensemble ce travail ouvre la possibilité d'une imagerie chimique quantitative absolue sub-cellulaire en 2D ou 3D avec la perspective d'imagerie corrélative avec de nombreuses techniques complémentaires notamment la microscopie électronique à transmission pour l'ultrastructure, la microscopie de fluorescence pour la localisation de proteines d'intérêts et d'autres techniques d'analyses chimiques telles le NanoSIMS ou le nano-PIXE.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00952355
Date19 February 2013
CreatorsKosior, Ewelina
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds