Cette thèse de mathématiques appliquées traite de la modélisation des déplacements de nageurs microscopiques. Nous étudions principalement les problèmes de contrôlabilité et d'optimalité associés à la mobilité d'un micro-nageur. Dans une première partie, nous présentons un modèle de nageur simplifié, appelé le"N- link swimmer". Ensuite, nous ́etudions sa contrôlabilité ainsi que l'existence de stratégies lui permettant d'atteindre un point donné le plus vite possible. Dans une deuxième partie, nous analysons les effets de la présence d'un bord sur la mobilité d'un micro-nageur. Nous montrons qu'un nageur qui est contrôlable lorsqu'il évolue dans l'espace non borné, reste "presque partout" localement contrôlable lorsqu'il nage dans un domaine délimité par un mur plat ou rugueux. Au contraire, nous prouvons qu'un nageur qui n'est pas capable d'atteindre toutes les directions lorsqu'il se déplace dans un domaine sans bord peut élargir ses directions accessibles en présence d'un mur (plat ou rugueux). Enfin, la dernière partie de la thèse fournit un cadre à l'étude de problèmes de contrôle optimal associés aux déplacements de nageurs ayant une dynamique sans dérive. Tout d'abord, nous ́etudions les propriétés mathématiques de plusieurs problèmes de contrôle optimal ayant des coûts fonctionnels différents (existence puis comportement). Ensuite, nous considérons les nageurs ayant deux degrés de liberté. Pour ces modèles particuliers de nageurs, nous présentons un cadre permettant d'en déduire des propriétés géométriques locales pour les solutions de certains problèmes de contrôle optimal. Tout au long de ce dernier chapitre, des simulations numériques, réalisées sur un exemple de nageur ayant une dynamique explicite, illustrent les résultats théoriques.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00873294 |
Date | 25 September 2013 |
Creators | Giraldi, Laetitia |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds