Spelling suggestions: "subject:"contrôle optimal géométriques"" "subject:"ontrôle optimal géométriques""
1 |
Méthodes mathématiques pour l'analyse de la natation à l'échelle microscopiqueGiraldi, Laetitia 25 September 2013 (has links) (PDF)
Cette thèse de mathématiques appliquées traite de la modélisation des déplacements de nageurs microscopiques. Nous étudions principalement les problèmes de contrôlabilité et d'optimalité associés à la mobilité d'un micro-nageur. Dans une première partie, nous présentons un modèle de nageur simplifié, appelé le"N- link swimmer". Ensuite, nous ́etudions sa contrôlabilité ainsi que l'existence de stratégies lui permettant d'atteindre un point donné le plus vite possible. Dans une deuxième partie, nous analysons les effets de la présence d'un bord sur la mobilité d'un micro-nageur. Nous montrons qu'un nageur qui est contrôlable lorsqu'il évolue dans l'espace non borné, reste "presque partout" localement contrôlable lorsqu'il nage dans un domaine délimité par un mur plat ou rugueux. Au contraire, nous prouvons qu'un nageur qui n'est pas capable d'atteindre toutes les directions lorsqu'il se déplace dans un domaine sans bord peut élargir ses directions accessibles en présence d'un mur (plat ou rugueux). Enfin, la dernière partie de la thèse fournit un cadre à l'étude de problèmes de contrôle optimal associés aux déplacements de nageurs ayant une dynamique sans dérive. Tout d'abord, nous ́etudions les propriétés mathématiques de plusieurs problèmes de contrôle optimal ayant des coûts fonctionnels différents (existence puis comportement). Ensuite, nous considérons les nageurs ayant deux degrés de liberté. Pour ces modèles particuliers de nageurs, nous présentons un cadre permettant d'en déduire des propriétés géométriques locales pour les solutions de certains problèmes de contrôle optimal. Tout au long de ce dernier chapitre, des simulations numériques, réalisées sur un exemple de nageur ayant une dynamique explicite, illustrent les résultats théoriques.
|
2 |
Méthodes mathématiques pour l'analyse de la natation à l'échelle microscopiqueGiraldi, Laetitia 25 September 2013 (has links) (PDF)
Cette thèse de mathématiques appliquées traite de la modélisation des déplacements de nageurs microscopiques. Nous étudions principalement les problèmes de contrôlabilité et d'optimalité associés à la mobilité d'un micro-nageur. Dans une première partie, nous présentons un modèle de nageur simplifié, appelé le"N- link swimmer". Ensuite, nous ́etudions sa contrôlabilité ainsi que l'existence de stratégies lui permettant d'atteindre un point donné le plus vite possible. Dans une deuxième partie, nous analysons les effets de la présence d'un bord sur la mobilité d'un micro-nageur. Nous montrons qu'un nageur qui est contrôlable lorsqu'il évolue dans l'espace non borné, reste "presque partout" localement contrôlable lorsqu'il nage dans un domaine délimité par un mur plat ou rugueux. Au contraire, nous prouvons qu'un nageur qui n'est pas capable d'atteindre toutes les directions lorsqu'il se déplace dans un domaine sans bord peut élargir ses directions accessibles en présence d'un mur (plat ou rugueux). Enfin, la dernière partie de la thèse fournit un cadre à l'étude de problèmes de contrôle optimal associés aux déplacements de nageurs ayant une dynamique sans dérive. Tout d'abord, nous ́etudions les propriétés mathématiques de plusieurs problèmes de contrôle optimal ayant des coûts fonctionnels différents (existence puis comportement). Ensuite, nous considérons les nageurs ayant deux degrés de liberté. Pour ces modèles particuliers de nageurs, nous présentons un cadre permettant d'en déduire des propriétés géométriques locales pour les solutions de certains problèmes de contrôle optimal. Tout au long de ce dernier chapitre, des simulations numériques, réalisées sur un exemple de nageur ayant une dynamique explicite, illustrent les résultats théoriques.
|
3 |
Sur le rôle des singularités hamiltoniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non-linéaire.Assemat, Elie 19 October 2012 (has links) (PDF)
Cette thèse possède un double objectif : le premier est l'amélioration des techniques de contrôle en mécanique quantique, et plus particulièrement en RMN, grâce aux techniques du contrôle optimal géométrique. Le second consiste à étudier l'influence des singularités hamiltoniennes dans les systèmes physiques contrôlés. Le chapitre traitant du contrôle optimal étudie trois problèmes classiques en RMN : l'inversion simultanée de deux spins, l'inclusion des termes non-linéaires dans le modèle et la méthode du point fixe. Ensuite, nous appliquons le PMP au problème de transfert de population dans un système quantique à trois niveaux pour retrouver le processus STIRAP. Les deux chapitres suivants étudient les singularités hamiltoniennes. Nous montrons comment l'étude des singularités hamiltoniennes permet de contrôler la polarisation dans différentes fibres optiques. Ensuite, nous montrons l'existence d'une monodromie hamiltonienne généralisée dans le spectre vibrationnel de la molécule HOCl. Enfin, nous donnons une méthode de mesure de la monodromie hamiltonienne dynamique dans deux systèmes classiques en optique non-linéaire : le modèle de Bragg et le mélange à trois ondes.
|
4 |
Contrôle optimal géométrique : méthodes homotopiques et applicationsCots, Olivier 20 September 2012 (has links) (PDF)
Le contexte de ce travail est le contrôle optimal géométrique appliqué à la mécanique céleste et au contrôle quantique. On s'est tout d'abord intéressé au problème de transfert orbital de satellite autour de la Terre à consommation minimale, qui amena à la réalisation du code HamPath, permettant tout d'abord la résolution de problèmes de contrôle optimal dont la loi de commande est lisse. Il se base sur le Principe du Maximum de Pontryagin (PMP) et sur la notion de point conjugué. Ce programme combine méthodes de tir, méthodes homotopiques différentielles et calcul des conditions d'optimalité du deuxième ordre. Nous nous intéressons par la suite au contrôle quantique. On étudie tout d'abord le contrôle d'un système composé de deux types de particules de spin 1/2 ayant des temps de relaxation différents et dont la dynamique est gouvernée par les équations de Bloch. Ces deux sous-systèmes, correspondant aux deux types de particules, sont couplés par un même contrôle (un champ electromagnétique), le but étant alors d'amener la magnétisation des particules du premier type à zéro tout en maximisant celle du second (dans un système de coordonnées bien choisi). Ce modèle intervient en imagerie médicale par Résonance Magnétique Nucléaire et consiste à maximiser le contraste entre deux régions d'une même image. L'utilisation des outils géométriques et numériques aura permis de donner une très bonne synthèse sous-optimale pour deux cas particuliers (mélange sang oxygéné/désoxygéné et liquide cérébrospinal/eau). La dernière contribution de cette thèse porte sur l'étude d'un système quantique à deux niveaux d'énergie dont la dynamique est régie par les équations de Lindblad. Le modèle est basé sur la minimisation d'énergie du transfert. On se restreint à un cas particulier pour lequel le Hamiltonien donné par le PMP est Liouville intégrable. On décrit alors les lieux conjugué et de coupure pour ce problème riemannien avec dérive.
|
5 |
Sur le rôle des singularités hamiltonniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non linéaireAssemat, Élie 19 October 2012 (has links) (PDF)
Cette thèse possède un double objectif : le premier est l'amélioration des techniques de contrôle en mécanique quantique, et plus particulièrement en RMN, grâce aux techniques du contrôle optimal géométrique. Le second consiste à étudier l'influence des singularités hamiltoniennes dans les systèmes physiques contrôlés. Le chapitre traitant du contrôle optimal étudie trois problèmes classiques en RMN : l'inversion simultanée de deux spins, l'inclusion des termes non-linéaires dans le modèle et la méthode du point fixe. Ensuite, nous appliquons le PMP au problème de transfert de population dans un système quantique à trois niveaux pour retrouver le processus STIRAP. Les deux chapitres suivants étudient les singularités hamiltoniennes. Nous montrons comment l'étude des singularités hamiltoniennes permet de contrôler la polarisation dans différentes fibres optiques. Ensuite, nous montrons l'existence d'une monodromie hamiltonienne généralisée dans le spectre vibrationnel de la molécule HOCl. Enfin, nous donnons une méthode de mesure de la monodromie hamiltonienne dynamique dans deux systèmes classiques en optique non-linéaire : le modèle de Bragg et le mélange à trois ondes
|
6 |
Contrôle optimal et métriques de Clairaut-Liouville avec applications / Optimal control and Clairaut-Liouville metrics with applicationsJassionnesse, Lionel 24 November 2014 (has links)
Le travail de cette thèse porte sur l'étude des lieux conjugué et de coupure de métriques riemanniennes ou pseudo-riemanniennes en dimension 2. On se place du point de vue du contrôle optimal pour appliquer le principe du maximum de Pontryagin afin de caractériser les extrémales des problèmes considérés.On va utiliser des méthodes géométriques, numériques et d'intégrabilité pour étudier des métriques de Clairaut-Liouville ou de Liouville sur la sphère. Dans le cas dégénéré de révolution, l'étude de l'ellipsoïde utilise des méthodes géométriques pour déterminer le lieu de coupure et la nature du lieu conjugué dans les cas oblat et prolat. Dans le cas général, les extrémales auront deux types de comportements distincts qui se rapportent à ceux observés dans le cas de révolution, et sont séparés par celles passant par des points ombilicaux. Les méthodes numériques sont utilisées pour retrouver rapidement la dernière conjecture géométrique de Jacobi : le lieu de coupure est un segment et le lieu conjugué contient quatre points de rebroussement.L'étude d'une métrique pseudo-riemannienne vient d'un problème de contrôle quantique où le but est de transférer en temps minimal l'état d'un spin à travers une chaîne de trois spins couplés par des interactions de type Ising. Après réduction, la métrique obtenue possède une intégrale première supplémentaire et on peut donc la mettre sous forme de Liouville, ce qui nous donne les équations des géodésiques. En dehors du cas particulier de Grushin, dont la caustique est décrite, on utilise les méthodes numériques pour étudier le lieu conjugué et le lieu de coupure dans le cas général. / The work of this thesis is about the study of the conjugate and cut loci of 2D riemannian or almost-riemannian metrics. We take the point of view of optimal control to apply the Pontryagin Maximum Principle in the purpose of characterize the extremals of the problem considered.We use geometric, numerical and integrability methods to study some Liouville and Clairaut-Liouville metrics on the sphere. In the degenerate case of revolution, the study of the ellipsoid uses geometric methods to fix the cut locus and the nature of the conjugate locus in the oblate and prolate cases. In the general case, extremals will have two distinct type of comportment which correspond to those observed in the revolution case, and are separated by those which pass by umbilical points. The numerical methods are used to find quickly the Jacobi's Last Geometric Statement : the cut locus is a segment and the conjugate locus has exactly four cusps.The study of an almost-riemannian metric comes from a quantum control problem in which the aim is to transfer in a minimal time the state of one spin through an Ising chain of three spins. After reduction, we obtain a metric with a second first integral so it can be written in the Liouville normal form, which leads us to the equations of geodesics. Outside the particular case of Grushin, of which the caustic is described, we use numerical methods to study the conjugate locus and the cut locus in the general case.
|
7 |
Sur le rôle des singularités hamiltonniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non linéaire / About the role of hamiltonian singularities in controlled systems : applications in quantum mechanics and nonlinear opticsAssemat, Élie 19 October 2012 (has links)
Cette thèse possède un double objectif : le premier est l'amélioration des techniques de contrôle en mécanique quantique, et plus particulièrement en RMN, grâce aux techniques du contrôle optimal géométrique. Le second consiste à étudier l'influence des singularités hamiltoniennes dans les systèmes physiques contrôlés. Le chapitre traitant du contrôle optimal étudie trois problèmes classiques en RMN : l'inversion simultanée de deux spins, l'inclusion des termes non-linéaires dans le modèle et la méthode du point fixe. Ensuite, nous appliquons le PMP au problème de transfert de population dans un système quantique à trois niveaux pour retrouver le processus STIRAP. Les deux chapitres suivants étudient les singularités hamiltoniennes. Nous montrons comment l'étude des singularités hamiltoniennes permet de contrôler la polarisation dans différentes fibres optiques. Ensuite, nous montrons l'existence d'une monodromie hamiltonienne généralisée dans le spectre vibrationnel de la molécule HOCl. Enfin, nous donnons une méthode de mesure de la monodromie hamiltonienne dynamique dans deux systèmes classiques en optique non-linéaire : le modèle de Bragg et le mélange à trois ondes / This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polarization in different type of optical fibers. Then, we show the existence of generalized hamiltonian monodromy in the vibrational spectrum of the HOCl molecule. Finally, we propose a method to measure dynamically the monodromy in two different nonlinear optics systems : the Bragg model and the three waves mixing model
|
8 |
Contrôle optimal géométrique : méthodes homotopiques et applications / Geometric optimal control : homotopic methods and applicationsCots, Olivier 20 September 2012 (has links)
Le contexte de ce travail est le contrôle optimal géométrique appliqué à la mécanique céleste et au contrôle quantique. On s’est tout d’abord intéressé au problème de transfert orbital de satellite autour de la Terre à consommation minimale,qui amena à la réalisation du code HamPath, permettant tout d’abord la résolution de problème de contrôle optimal dont la loi de commande est lisse. Il se base sur le Principe du Maximum de Pontryagin (PMP) et sur la notion de point conjugué. Ce programme combine méthode de tir, méthodes homotopiques différentielles et calcul des conditions d’optimalité du deuxième ordre. Nous nous intéressons par la suite au contrôle quantique. On étudie tout d’abord le contrôle d’un système composé de deux types de particules de spin 1/2 ayant des temps de relaxation différents et dont la dynamique est gouvernée par les équations de Bloch. Ces deux sous-systèmes,correspondant aux deux types de particules, sont couplés par un même contrôle (un champ electromagnétique), le but étant alors d’amener la magnétisation des particules du premier type à zéro tout en maximisant celle du second (dans un système de coordonnées bien choisi). Ce modèle intervient en imagerie médicale par Résonance Magnétique Nucléaire et consiste à maximiser le contraste entre deux régions d’une même image. L’utilisation des outils géométriques et numériques aura permis de donner une très bonne synthèse sous-optimale pour deux cas particuliers (mélange sang oxygéné/désoxygéné et liquide cérébrospinal/eau). La dernière contribution de cette thèse porte sur l’étude d’un système quantique à deux niveaux d’énergie dontl a dynamique est régie par les équations de Lindblad. Le modèle est basé sur la minimisation d’énergie du transfert. On se restreint à un cas particulier pour lequelle Hamiltonien donné par le PMP est Liouville intégrable. On décrit alors les lieux conjugués et de coupure pour ce problème riemannien avec dérive / This work is about geometric optimal control applied to celestial and quantum mechanics. We first dealt with the minimum fuel consumption problem of transfering a satellite around the Earth. This brought to the creation of the code HamPath which permits first of all to solve optimal control problem for which the command law is smooth. It is based on the Pontryagin Maximum Principle (PMP) and on the notion of conjugate point. This program combines shooting method, differential homotopic methods and tools to compute second order optimality conditions. Then we are interested in quantum control. We study first a system which consists in two different particles of spin 1/2 having two different relaxation time. Both sub-systems are driven by the same control. The problem consists in bringing to zero the magnetization of one of the two system while maximizing the magnetization of the second one. This problem comes from constrast imaging in Nuclear Magnetic Resonance and consists in maximising the contrast between two areas of the image. The use of geometrical and numerical tools has given a very precise sub-optimal synthesis for two particular cases (deoxygenated/oxygenated blood and cerebrospinal fluid/water cases). The last contribution of this thesis is about the Lindblad equations in the two-level case. The model is based upon the minimisation of the transfer energy. We restrict the study to a particular case for which the Hamiltonian given by the PMP is Liouville integrable.We describe the conjugate and cut loci for this Riemannian with drift problem
|
Page generated in 0.0678 seconds