Return to search

Installation of Suction Caissons in Dense Sand and the Influence of Silt and Cemented Layers

Doctor of Philosophy / Suction caissons have been used in the offshore industry in the last two decades as both temporary mooring anchorages and permanent foundation systems. Although there have been more than 500 suction caissons installed in various locations around the world,understanding of this concept is still limited. This thesis investigates the installation aspect of suction caissons, focusing on the installation in dense sand and layered soils, where sand is inter-bedded by silt and weakly cemented layers. The research was mainly experimental, at both normal gravity and elevated acceleration levels in a geotechnical centrifuge, with some numerical simulations to complement the experimental observations. This study firstly explored the suction caisson installation response in the laboratory at 1g. The influence and effect of different design parameters, which include caisson size and wall thickness, and operational parameters including pumping rate and the use of surcharge were investigated in dense silica sand. The sand heave inside the caisson formed during these installations was also recorded and compared between tests. The 1g study also investigated the possibility of installing suction caissons in layered sand-silt soil, where caissons were installed by both slow and rapid pumping. The heave formation in this case is also discussed. The mechanism of heave formation in dense sand and deformation of the silt layer was further investigated using a half-caisson model and the particle image velocimetry (PIV) technique. The installation response at prototype soil stress conditions was then investigated in a geotechnical centrifuge. The effects of caisson size, wall thickness, as well as surcharge were investigated in various types of sand, including silica sand, calcareous sand dredged from the North Rankin site in the North West Shelf (Australia), and mixed soil where silica sand was mixed with different contents of silica flour. Comparison with the 1g results was also made. The general trend for the suction pressure during installation in homogenous sand was identified. The installation in layered soil was also investigated in the centrifuge. The installation tests were performed in various sand-silt profiles, where the silt layers were on the surface and embedded within the sand. Comparison with the results in homogenous sand was made to explore the influence of the silt layer. Installations in calcareous sand with cemented layers were also conducted. The penetration mechanism through the cemented layer is discussed, and also compared with the penetration mechanism through the silt layer. Finite element modelling was performed to simulate key installation behaviour. In particular, it was applied to simulate the sand deformation observed in the PIV tests. The likely loosening range of the internal sand plug during suction installation in silica sand was estimated. By investigating the development of hydraulic gradient along the inner wall, the principle underlying the suction response for different combinations of selfweight and wall thickness was identified. FE modelling was also performed to explore the influence of the hydraulic blockage by the silt layer. This study found that the caissons could penetrate into all soils by suction installation. Among the key findings are the observations that the suction pressure increases with depth following a distinct pressure slope, corresponding to a critical hydraulic condition along the inner wall; and the installation was possible in both layered sand-silt and uncemented-cemented soils if sufficient pumping was available. While the caisson could penetrate the weakly cemented layers well with no notable adverse effects, problems were observed in the installation in layered sand-silt soil. These include piping failure in slow pumping rate installation at 1g, and the formation of extremely unstable soil heave during installation.

Identiferoai:union.ndltd.org:ADTP/207860
Date January 2006
CreatorsTran, Manh Ngoc
PublisherUniversity of Sydney, School of Civil Engineering
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0019 seconds