Ce travail de thèse a concerné l’étude du comportement de nanoparticules d’électrocatalyseurs à base de Pt et Co déposées sur carbone de grande aire développée (Pt/C, PtCo/C et Pt3Co/C) en conditions représentative d’un fonctionnement à la cathode d’une pile à combustible à membrane échangeuse de protons. Dans une première phase, des électrodes modèles de ces matériaux ont été préparées sur des embouts de carbone vitreux compatibles avec une utilisation en montage d’électrode à disque tournant en milieu acide sulfurique, pour étudier l’évolution des performances électrochimiques (adsorption/désorption de l’hydrogène, Hupd, électrooxydation d’une monocouche de CO adsorbée à la surface du catalyseur : « CO-stripping », cinétique d’électroréduction de l’oxygène) après cyclage accéléré de potentiel (0,1 à 0,9 V vs. RHE et 0,6 à 0,9 V vs. RHE par créneaux d’une minute à chaque potentiel). Ces mesures électrochimiques ont été complétées par des observations statistiques par microscopie électronique en transmission (TEM) et fluorescence X (X-EDS) avant/après ces vieillissements sur des prélèvements représentatifs des couches actives. Les résultats montrent que le cobalt est irréversiblement oxydé/dissous des alliages Pt-Co et que la maturation d’Ostwald advient (pour le Pt) spécialement lorsque la borne inférieure de potentiel est fixée à 0,1 V vs. RHE. Ces mesures statistiques ont été confirmées par des expériences de MET en localisation identique (ILTEM), dans lesquelles les mêmes nanoparticules sont physiquement observées avant/après électrochimie réalisée sur la grille de microscopie[1]. Dans un second temps, des vieillissements identiques ont été mis en œuvre sur les mêmes matériaux électrocatalytiques en électrolyte polymère (Nafion), plus représentatif des conditions PEMFC, par utilisation d’une ultramicroélectrode à cavité et d’une « cellule sèche » dans laquelle le seul électrolyte est le Nafion (il n’y a donc pas d’électrolyte liquide). Dans ces conditions, plus proches des conditions réelles de fonctionnement d’une PEMFC, les mécanismes de dégradations sont différents de ceux observés en présence (d’excès) d’électrolyte liquide, parce que (entre autre), les ions Pt2+ formés à haut potentiel sont piégés dans le ionomère et donc plus faciles à redéposer sur les nanoparticules restantes. Le changement de morphologie (et composition) des nanoparticules de Pt/C (et Pt-Co/C) n’est donc pas identique en milieu H2SO4 et en milieu Nafion, ce qui montre que les tests réalisés en condition de laboratoire (en électrolyte liquide) ne sont pas forcément représentatifs de ce qui advient en PEMFC. Par extension, cette cellule sèche a été mise en œuvre pour mesurer les propriétés électrocatalytiques des différents électrocatalyseurs et, une fois encore, le milieu électrolyte liquide ne rend pas compte des performances observées en milieu « polymère ». Ces mesures ont été complétées par des observations statistiques en MET. Enfin, et il s’agit d’une innovation conséquente propre à ce travail, la méthode ILTEM a été employée pour des grilles de microscopie (supportant les électrocatalyseurs) n’ayant été utilisées qu’en interface avec un électrolyte polymère. Cela a permis de confirmer de manière quantitative et sur les mêmes grains de carbone / nanoparticules de Pt (ou Pt-Co) que les dégradations observées en milieu électrolyte liquide ne rendent pas compte de celles advenant en milieu polymère, la présence d’eau liquide jouant un rôle déterminant dans le premier cas (dissolution des espèces Pt2+/Co2+, oxydation du carbone, etc.). / In this study the oxygen reduction reaction (ORR) activity of Pt/C, Pt3Co/C and PtCo/C electrocatalysts supported on high surface area carbon (Vulcan XC-72) was correlated to their structural, morphological and compositional changes experienced after accelerated aging tests. The electrolytes were sulfuric acid at several concentrations and Nafion® ionomer membrane. These tests are based on different protocols that consisted of stepping the potential or keeping the electrode polarized at fixed potentials. The protocols which used steps consisted of stepping the potential during 1 minute for 15 hours overall successively between 0.9 and 0.1 V vs. ERH, 0.9 and 0.6 V vs. ERH, 1.05 and 0.10 V vs. ERH and 1.05 and 0.65 V vs. ERH. For the aging at fixed polarization (15 hours), the following potentials were used: 0.9, 0.6 and 0.1 V vs. ERH. After the 0.9 – 0.1 V vs. ERH aging in aqueous acidic solution, the Pt-Co/C catalysts showed no changes in the activity, while for Pt/C an improvement was seen. However for 1.05 – 0.10 V vs. ERH for Pt/C there was also an improvement while for the other catalysts there was a decrease of the activity. For all other protocols, a loss in activity was observed for all catalysts. Transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy (X-EDS) analyses were used to characterize the as received and aged catalysts. A particularity of this work is the use of identical location transmission electron microscopy (ILTEM) technique, with the objective of analyzing the same electrode regions or particles before and after the accelerated ageing processes, so that it was possible to follow all the morphological, structural and compositional changes caused by the catalyst aging processes. The catalysts were compared before and after aging regarding the mean particle size, shape, particle density and composition and correlating these with the catalytic activity. Generally it was observed that the degradation correspond to carbon corrosion, coalescence, dissolution and re-precipitation of the catalyst particles for all aging protocols. The Pt/C catalyst, for example, for which an increase of particle mean size without any negative effect of agglomeration was observed, presented an improvement of the catalytic activity, while Pt-Co/C, in spite of the increase of the mean particle size and cobalt dissolution, presented worse or at most the same activity as that of the uncycled materials. Finally, the degradation mechanisms of the electrocatalysts aged in dry electrochemical environment using a Nafion® 115 membrane as polymer electrolyte were characterized by Identical Location Transmission Electron Microscopy, in conditions that perfectly mimic real PEMFC operation. The structural, morphological and compositional changes of the nanoparticles occurring during an accelerated stress test were bridged to changes of their intrinsic kinetics towards the oxygen reduction reaction in Nafion® 115 electrolyte, thanks to an ultramicroelectrode with cavity loaded with the catalyst. The unique setup used herein further enabled to compare the Nafion® environment with conventional liquid electrolyte in which accelerated stress tests are usually performed. Although the nanoparticles are modified upon ageing at Nafion® interface, the degradation processes are milder and different than those observed in liquid electrolyte, mostly following the absence of liquid water and the lack of ion mobility within the Nafion® membrane.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENI024 |
Date | 29 July 2013 |
Creators | Nikkuni, Flavio |
Contributors | Grenoble, Chatenet, Marian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds