Return to search

Un test d'adéquation global pour la fonction de répartition conditionnelle

Soient X et Y , deux variables aléatoires. De nombreuses procédures statistiques permettent d'ajuster un modèle à ces données dans le but d'expliquer Y à partir de X. La mise en place d'un tel modèle fait généralement appel à diverses hypothèses que <br />l'on doit valider pour justifier son utilisation. Dans ce travail, on propose une approche globale où toutes les hypothèses faites pour asseoir ce modèle sont testées simultanément. <br />Plus précisément, on construit un test basé sur une quantité qui permet de canaliser toute l'information liant X à Y : la fonction de répartition conditionnelle de Y sachant (X = x) définie par F(y|x)=P(Y<=y|X=x). Notre test compare la valeur prise par l'estimateur polynômial local de F(y|x) à une estimation paramétrique du modèle supposé et rejette sa <br />validité si la distance entre ces deux quantités est trop grande. Dans un premier temps, on considère le cas où la fonction de répartition supposée est entièrement spécifiée et, dans <br />ce contexte, on établit le comportement asymptotique du test. Dans la deuxième partie du travail, on généralise ce résultat au cas plus courant en pratique où le modèle supposé contient un certain nombre de paramètres inconnus. On étudie ensuite la puissance locale du test en déterminant son comportement asymptotique local sous des suites d'hypothèses contigües. Enfin, on propose un critère de choix de la fenêtre d'ajustement qui intervient lors de l'étape d'estimation polynômiale locale de la fonction de répartition conditionnelle.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008559
Date17 December 2004
CreatorsFERRIGNO, Sandie
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds