Return to search

Extraction d'arguments de relations n-aires dans les textes guidée par une RTO de domaine / Extraction of arguments in N-ary relations in texts guided by a domain OTR

Aujourd'hui, la communauté scientifique a l'opportunité de partager des connaissances et d'accéder à de nouvelles informations à travers les documents publiés et stockés dans les bases en ligne du web. Dans ce contexte, la valorisation des données disponibles reste un défi majeur pour permettre aux experts de les réutiliser et les analyser afin de produire de la connaissance du domaine. Pour être valorisées, les données pertinentes doivent être extraites des documents puis structurées. Nos travaux s'inscrivent dans la problématique de la capitalisation des données expérimentales issues des articles scientifiques, sélectionnés dans des bases en ligne, afin de les réutiliser dans des outils d'aide à la décision. Les mesures expérimentales (par exemple, la perméabilité à l'oxygène d'un emballage ou le broyage d'une biomasse) réalisées sur différents objets d'études (par exemple, emballage ou procédé de bioraffinerie) sont représentées sous forme de relations n-aires dans une Ressource Termino-Ontologique (RTO). La RTO est modélisée pour représenter les relations n-aires en associant une partie terminologique et/ou linguistique aux ontologies afin d'établir une distinction claire entre la manifestation linguistique (le terme) et la notion qu'elle dénote (le concept). La thèse a pour objectif de proposer une contribution méthodologique d'extraction automatique ou semi-automatique d'arguments de relations n-aires provenant de documents textuels afin de peupler la RTO avec de nouvelles instances. Les méthodologies proposées exploitent et adaptent conjointement des approches de Traitement automatique de la Langue (TAL) et de fouille de données, le tout s'appuyant sur le support sémantique apporté par la RTO de domaine. De manière précise, nous cherchons, dans un premier temps, à extraire des termes, dénotant les concepts d'unités de mesure, réputés difficiles à identifier du fait de leur forte variation typographique dans les textes. Après la localisation de ces derniers par des méthodes de classification automatique, les variants d'unités sont identifiés en utilisant des mesures d'édition originales. La seconde contribution méthodologique de nos travaux repose sur l'adaptation et la combinaison de méthodes de fouille de données (extraction de motifs et règles séquentiels) et d'analyse syntaxique pour identifier les instances d'arguments de la relation n-aire recherchée. / Today, a huge amount of data is made available to the research community through several web-based libraries. Enhancing data collected from scientific documents is a major challenge in order to analyze and reuse efficiently domain knowledge. To be enhanced, data need to be extracted from documents and structured in a common representation using a controlled vocabulary as in ontologies. Our research deals with knowledge engineering issues of experimental data, extracted from scientific articles, in order to reuse them in decision support systems. Experimental data can be represented by n-ary relations which link a studied object (e.g. food packaging, transformation process) with its features (e.g. oxygen permeability in packaging, biomass grinding) and capitalized in an Ontological and Terminological Ressource (OTR). An OTR associates an ontology with a terminological and/or a linguistic part in order to establish a clear distinction between the term and the notion it denotes (the concept). Our work focuses on n-ary relation extraction from scientific documents in order to populate a domain OTR with new instances. Our contributions are based on Natural Language Processing (NLP) together with data mining approaches guided by the domain OTR. More precisely, firstly, we propose to focus on unit of measure extraction which are known to be difficult to identify because of their typographic variations. We propose to rely on automatic classification of texts, using supervised learning methods, to reduce the search space of variants of units, and then, we propose a new similarity measure that identifies them, taking into account their syntactic properties. Secondly, we propose to adapt and combine data mining methods (sequential patterns and rules mining) and syntactic analysis in order to overcome the challenging process of identifying and extracting n-ary relation instances drowned in unstructured texts.

Identiferoai:union.ndltd.org:theses.fr/2015MONTS019
Date29 September 2015
CreatorsBerrahou, Soumia Lilia
ContributorsMontpellier, Roche, Mathieu, Dibie-Barthélemy, Juliette, Buche, Patrice
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds