La démocratisation de la « vidéosurveillance intelligente » nécessite le développement d’outils automatiques et temps réel d’analyse vidéo. Parmi ceux-ci, la détection de piétons joue un rôle majeur car de nombreux systèmes reposent sur cette technologie. Les approches classiques de détection de piétons utilisent la reconnaissance de formes et l’apprentissage statistique. Elles souffrent donc d’une dégradation des performances quand l’apparence des piétons ou des éléments de la scène est trop différente de celle étudiée lors de l’apprentissage. Pour y remédier, une solution appelée « contextualisation du détecteur » est étudiée lorsque la caméra est fixe. L’idée est d’enrichir le système à l’aide d’informations provenant de la scène afin de l’adapter aux situations qu’il risque de fréquemment rencontrer. Ce travail a été réalisé en deux temps. Tout d’abord, l’architecture d’un détecteur et les différents outils utiles à sa construction sont présentés dans un état de l’art. Puis la problématique de la contextualisation est abordée au travers de diverses expériences validant ou non les pistes d’amélioration envisagées. L’objectif est d’identifier toutes les briques du système pouvant bénéficier de cet apport afin de contextualiser complètement le détecteur. Pour faciliter l’exploitation d’un tel système, la contextualisation a été entièrement automatisée et s’appuie sur des algorithmes d’apprentissage semi-supervisé. Une première phase consiste à collecter le maximum d’informations sur la scène. Différents oracles sont proposés afin d’extraire l’apparence des piétons et des éléments du fond pour former une base d’apprentissage dite contextualisée. La géométrie de la scène, influant sur la taille et l’orientation des piétons, peut ensuite être analysée pour définir des régions, dans lesquelles les piétons, tout comme le fond, restent visuellement proches. Dans la deuxième phase, toutes ces connaissances sont intégrées dans le détecteur. Pour chaque région, un classifieur est construit à l’aide de la base contextualisée et fonctionne indépendamment des autres. Ainsi chaque classifieur est entraîné avec des données ayant la même apparence que les piétons qu’il devra détecter. Cela simplifie le problème de l’apprentissage et augmente significativement les performances du système. / With the rise of videosurveillance systems comes a logical need for automatic and real-time processes to analyze the huge amount of generated data. Among these tools, pedestrian detection algorithms are essential, because in videosurveillance locating people is often the first step leading to more complex behavioral analyses. Classical pedestrian detection approaches are based on machine learning and pattern recognition algorithms. Thus they generally underperform when the pedestrians’ appearance observed by a camera tends to differ too much from the one in the generic training dataset. This thesis studies the concept of the contextualization of such a detector. This consists in introducing scene information into a generic pedestrian detector. The main objective is to adapt it to the most frequent situations and so to improve its overall performances. The key hypothesis made here is that the camera is static, which is common in videosurveillance scenarios.This work is split into two parts. First a state of the art introduces the architecture of a pedestrian detector and the different algorithms involved in its building. Then the problem of the contextualization is tackled and a series of experiments validates or not the explored leads. The goal is to identify every part of the detector which can benefit from the approach in order to fully contextualize it. To make the contextualization process easier, our method is completely automatic and is based on semi-supervised learning methods. First of all, data coming from the scene are gathered. We propose different oracles to detect some pedestrians in order to catch their appearance and to form a contextualized training dataset. Then, we analyze the scene geometry, which influences the size and the orientation of the pedestrians and we divide the scene into different regions. In each region, pedestrians as well as background elements share a similar appearance.In the second step, all this information is used to build the final detector which is composed of several classifiers, one by region. Each classifier independently scans its dedicated piece of image. Thus, it is only trained with a region-specific contextualized dataset, containing less appearance variability than a global one. Consequently, the training stage is easier and the overall detection results on the scene are improved.
Identifer | oai:union.ndltd.org:theses.fr/2013CLF22362 |
Date | 24 June 2013 |
Creators | Chesnais, Thierry |
Contributors | Clermont-Ferrand 2, Chateau, Thierry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds