Return to search

Analysis of positive solutions for singular p-Laplacian problems via fixed point methods

In this dissertation, we study the existence and nonexistence of positive solutions to some classes of singular p-Laplacian boundary value problems with a parameter. In the first study, we discuss positive solutions for a class of sublinear Dirichlet p- Laplacian equations and systems with sign-changing coefficients on a bounded domain of Rn via Schauder Fixed Point Theorem and the method of sub- and supersolutions. Under certain conditions, we show the existence of positive solutions when the parameter is large and nonexistence when the parameter is small. In the second study, we discuss positive radial solutions for a class of superlinear p- Laplacian problems with nonlinear boundary conditions on an exterior domain via degree theory and fixed point approach. Under certain conditions, we show the existence of positive solutions when the paprameter is small and nonexistence when the paramter is large. Our results provide extensions of corresponding ones in the literature from the Laplacian to the p-Laplacian, and can be applied to the challenging infinite semipositone case

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-1652
Date07 August 2020
CreatorsAlotaibi, Trad Haza
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0019 seconds