Return to search

Régulation de l'expression des immunoglobulines au cours du développement lymphocytaire B tardif / Regulation of immunoglobulins expression during late B lymphocytes development

Le processus aléatoire des recombinaisons V(D)J permet d’obtenir un répertoire d’anticorps (Ac) ou immunoglobulines (Ig) hautement diversifié. En revanche, le caractère imprécis des jonctions V(D)J conduit à l’apparition de décalages du cadre de lecture dans deux tiers des cas. Ainsi, la plupart des cellules B hébergent des allèles d’Ig avec des réarrangements V(D)J non-productifs au sein de leur génome. Plusieurs études incluant celles menées au laboratoire ont montré que ces allèles non-productifs sont transcrits mais subissent une régulation post-transcriptionnelle impliquant le mécanisme de dégradation des ARNm appelé NMD « Nonsense-Mediated mRNA Decay ». Cette surveillance ARN diminue ainsi le taux d’ARNm codant pour des chaînes d’Ig tronquées. En revanche, l’impact de l’épissage alternatif des transcrits d’Ig non-productifs sur la production d’Ig aberrantes reste jusqu’ici peu exploré. L’étude de ce processus appelé NAS (« Nonsense-associated Altered Splicing »), et en particulier du phénomène de saut d’exon, présente un grand intérêt car cet épissage alternatif peut permettre la synthèse d’Ig tronquées présentant des délétions internes. Les projets développés lors de cette thèse ont révélé la toxicité des chaînes d’Ig dépourvues de domaine variable (V) dans les plasmocytes, et mis en évidence l’existence d’un nouveau point de contrôle au cours de la différenciation plasmocytaire. Ce phénomène nommé TIE-checkpoint (Truncated-Ig Exclusion) conduisant à l’élimination des plasmocytes exprimant des Ig tronquées, est la conséquence d’un saut d’exon lors de l’épissage des transcrits Ig non-productifs. Pour étudier les évènements de NAS lors de l’épissage des transcrits d’Ig dans les plasmocytes, il faut par conséquent limiter l’activation du TIE-checkpoint. A l’aide d’un modèle murin présentant un exon non-sens additionnel au locus IgH, nous avons pu analyser in vivo l’épissage alternatif par « saut d’exon » des transcrits d’Ig non-productifs. En effet, l’élimination de cet exon addtionnel aboutit à la synthèse d’une chaîne d’Ig normale et non à la production de chaînes tronquées. Cette étude a été menée dans des cellules B primaires et des plasmocytes. Les résultats obtenus ont révélé que l’hypertranscription des gènes d’Ig, qui accompagne la différenciation plasmocytaire, favorise l’épissage alternatif des transcrits d’Ig non-productifs, par un phénomène de saut d’exon. Nous avons également étudié les éventuelles connexions entre le mécanisme de NMD, impliqué dans la surveillance des ARNm, et l’UPR (« Unfolded Protein Response ») permettant de réguler l’homéostasie protéique dans les plasmocytes. De façon originale, nous avons identifié une boucle de régulation positive entre les processus de surveillance ARN (NMD) et protéique (UPR, autophagie, protéasome). La mise en évidence de cette coopération dans les plasmocytes constitue un exemple unique au vue de la littérature et, aurait pour effet de limiter la synthèse d’Ig tronquées tout en autorisant la synthèse massive d’Ig. Enfin, nous avons étudié le rôle de l’épissage des transcrits d’Ig non-codants (appelés transcrits I « germinaux ») au cours du processus de CSR « Class Switch Recombination ». Cette étude a apporté des précisions sur le rôle des sites donneurs d’épissage des exons I et révélé que la reconnaissance de ces sites d’épissage module l’intensité de la transcription de la région « switch » S adjacente, et par conséquent, son accessibilité à AID « Activation-Inducedcytidine Deaminase » lors de la CSR. / The random V(D)J recombination process contributes to the generation of a vast immunoglobulin (Ig) repertoire. However, imprecise V(D)J junctions lead to the appearance of frameshift mutations in two-third of the cases. Hence, numerous B-lineage cells retain non-productively V(D)J rearranged Ig alleles in their genome. Several studies including ours have shown that these non-productive alleles are transcribed but rapidly degraded by NMD « Nonsense-Mediated mRNA Decay », thus decreasing the level of mRNA encoding truncated Ig. However, less is known about the impact of alternative splicing on non-productive Ig transcripts, and especially « exon skipping », with regard to the production of truncated Ig with internal deletions. During my thesis, we have shown that truncated Ig chains lacking variable (V) domain exhibted toxic effects in plasma cells revealing a new « Truncated-Ig Exclusion » (TIE-) checkpoint during plasma cell differentiation. The TIE-checkpoint eliminates plasma cell-expressing truncated Ig, as a consequence of exon skipping during splicing of non-productive Igκ transcripts. However, the TIE checkpoint activation limits the analysis of NAS (« Nonsense associated Altered Splicing ») of Ig transcripts in plasma cells. Using a mouse model harboring an additional frameshift-inducing V exon at the IgH chain locus, we could analyze NAS of non-productive Ig transcripts in primary B cells and plasma cells. This study revealed that hypertranscription of Ig genes accompanying plasma cell differentiation favors alternative splicing of non-productive Ig transcripts. We also investigated potential connections between the NMD mechanism, involved in mRNA surveillance, and the UPR (« Unfolded Protein Response ») pathway that regulates protein homeostasis in plasma cells. Interestingly, we identified a positive regulatory loop between RNA (NMD) and protein (UPR, autophagy, proteasome) surveillance processes. In view of the literature, the occurrence of such cooperation is unique to plasma cells, and this should help to limit the expression of truncated Ig while allowing massive Ig synthesis. Finally, we studied other aspects of Ig RNA splicing, and investigated the role of splice donor site on non-coding « germline » I transcripts during CSR (« Class Switch Recombination »). Using dedicated mouse models, we found that the deletion of Iƴ1 splice donor site drastically decreased CSR to IgG1. Overall, this study demonstrated that the recognition of I exon donor splice site enhances transcription of « switch » regions S, facilitating their opening and the subsequent recruitment of AID « Activation-Induced cytidine Deaminase » during CSR.

Identiferoai:union.ndltd.org:theses.fr/2018LIMO0008
Date30 March 2018
CreatorsAshi, Mohamad Omar
ContributorsLimoges, Delpy, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds