Le projet de cette thèse est double. Le premier concerne l’extension des résultats précédents sur les conditions nécessaires d’optimalité pour des problèmes avec contraintes d’état, dans le cadre du contrôle optimal ainsi que dans le cadre de calcul des variations. Le deuxième objectif consiste à travailler sur deux nouveaux aspects de recherche : dériver des résultats de viabilité pour une classe de systèmes de contrôle avec des contraintes d’état dans lesquels les conditions dites ‘standard inward pointing conditions’ sont violées; et établir les conditions nécessaires d’optimalité pour des problèmes de minimisation de coût moyen éventuellement perturbés par des paramètres inconnus.Dans la première partie, nous examinons les conditions nécessaires d’optimalité qui jouent un rôle important dans la recherche de candidats pour être des solutions optimales parmi toutes les solutions admissibles. Cependant, dans les problèmes d’optimisation dynamique avec contraintes d’état, certaines situations pathologiques pourraient survenir. Par exemple, il se peut que le multiplicateur associé à la fonction objective (à minimiser) disparaisse. Dans ce cas, la fonction objective à minimiser n’intervient pas dans les conditions nécessaires de premier ordre: il s’agit du cas dit anormal. Un phénomène pire, appelé le cas dégénéré montre que, dans certaines circonstances, l’ensemble des trajectoires admissibles coïncide avec l’ensemble des candidats minimiseurs. Par conséquent, les conditions nécessaires ne donnent aucune information sur les minimiseurs possibles.Pour surmonter ces difficultés, de nouvelles hypothèses supplémentaires doivent être imposées, appelées les qualifications de la contrainte. Nous étudions ces deux problèmes (normalité et non dégénérescence) pour des problèmes de contrôle optimal impliquant des contraintes dynamiques exprimées en termes d’inclusion différentielle, lorsque le minimiseur a son point de départ dans une région où la contrainte d’état est non lisse. Nous prouvons que sous une information supplémentaire impliquant principalement le cône tangent de Clarke, les conditions nécessaires sous la forme dite ‘Extended Euler-Lagrange condition’ sont satisfaites en forme normale et non dégénérée pour deux classes de problèmes de contrôle optimal avec contrainte d’état. Le résultat sur la normalité est également appliqué pour le problème de calcul des variations avec contrainte d’état.Dans la deuxième partie de la thèse, nous considérons d’abord une classe de systèmes de contrôle avec contrainte d’état pour lesquels les qualifications de la contrainte standard du ‘premier ordre’ ne sont pas satisfaites, mais une qualification de la contrainte d’ordre supérieure (ordre 2) est satisfaite.Nous proposons une nouvelle construction des trajectoires admissibles (dit un résultat de viabilité) et nous étudions des exemples (tels que l’intégrateur non holonomique de Brockett) fournissant en plus un résultat d’estimation non linéaire. L’autre sujet de la deuxième partie de la thèse concerne l’étude d’une classe de problèmes de contrôle optimal dans lesquels des incertitudes apparaissent dans les données en termes de paramètres inconnus. En tenant compte d’un critère de performance sous la forme de coût moyen, une question cruciale est clairement de pouvoir caractériser les contrôles optimaux indépendamment de l’action du paramètre inconnu: cela permet de trouver une sorte de ‘meilleur compromis’ parmi toutes les réalisations possibles du système de contrôle tant que le paramètre varie. Pour ce type de problèmes, nous obtenons des conditions nécessaires d’optimalité sous la forme du Principe du Maximum (éventuellement pour le cas non lisse). / The project of this thesis is twofold. The first concerns the extension of previous results on necessary optimality conditions for state constrained problems in optimal control and in calculus of variations. The second aim consists in working along two new research lines: derive viability results for a class of control systems with state constraints in which ‘standard inward pointing conditions’ are violated; and establish necessary optimality conditions for average cost minimization problems possibly perturbed by unknown parameters.In the first part, we examine necessary optimality conditions which play an important role in finding candidates to be optimal solutions among all admissible solutions. However, in dynamic optimization problems with state constraints, some pathological situations might arise. For instance, it might occur that the multiplier associated with the objective function (to minimize) vanishes. In this case, the objective function to minimize does not intervene in first order necessary conditions: this is referred to as the abnormal case. A worse phenomenon, called the degenerate case shows that in some circumstances the set of admissible trajectories coincides with the set of candidates to be minimizers. Therefore the necessary conditions give no information on the possible minimizers.To overcome these difficulties, new additional hypotheses have to be imposed, known as constraint qualifications. We investigate these two issues (normality and non-degeneracy) for optimal control problems involving state constraints and dynamics expressed as a differential inclusion, when the minimizer has its left end-point in a region where the state constraint set in nonsmooth. We prove that under an additional information involving mainly the Clarke tangent cone, necessary conditions in the form of the Extended Euler-Lagrange condition are derived in the normal and non-degenerate form for two different classes of state constrained optimal control problems. Application of the normality result is shown also for the calculus of variations problem subject to a state constraint.In the second part of the thesis, we consider first a class of state constrained control systems for which standard ‘first order’ constraint qualifications are not satisfied, but a higher (second) order constraint qualification is satisfied. We propose a new construction for feasible trajectories (a viability result) and we investigate examples (such as the Brockett nonholonomic integrator) providing in addition a non-linear stimate result. The other topic of the second part of the thesis concerns the study of a class of optimal control problems in which uncertainties appear in the data in terms of unknown parameters. Taking into consideration an average cost criterion, a crucial issue is clearly to be able to characterize optimal controls independently of the unknown parameter action: this allows to find a sort of ‘best compromise’ among all the possible realizations of the control system as the parameter varies. For this type of problems, we derive necessary optimality conditions in the form of Maximum Principle (possibly nonsmooth).
Identifer | oai:union.ndltd.org:theses.fr/2017BRES0095 |
Date | 17 November 2017 |
Creators | Khalil, Nathalie |
Contributors | Brest, Bettiol, Piernicola |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds