Zwei Populus-Pfropfchimären (MA und AI), die aus P. x canadensis ‘Marilandica’ (M), P. maximowizcii x P. trichocarpa ‘Androscoggin’ (A) and P. nigra L. ’Italica’ (I) aufgebaut sind, wurden für Untersuchungen zur Laub- und Blütenblattentwicklung genutzt. In MA bildet M die äußere Lage (L1) und ihr Derivat, die Epidermis, während die inneren Lagen (L2, L3 etc.) von A gebildet werden. Bei AI stammt die L1 von A und L2, L3 etc. werden von I gebildet. Die genotypisch andersartige Epidermis bedingt bei Periklinal-Chimären morphologische Effekte wie zum Beispiel einen Fruchtknoten in einigen MA-Blüten. Morphologische Besonderheiten verschiedener Gewebe sowohl von M und A als auch von MA wurden verglichen, um festzustellen, wie sie durch die Gewebetransplantation verändert oder beeinflusst wurden und, um mögliche Genotyp- Interaktionen oder -Wechselwirkungen in einem Gewebe ausfindig zu machen. Für die Genotypidentifizierung in verschiedenen Organen wurde die RAPD-PCR getestet. Einer von 20 getesteten 10mer Zufallsprimern (GGAGTGGACA) ermöglichte bei der Verwendung von DNA aus Blattmaterial die Erzeugung verschiedener Bandenmuster für M und A. Bei der Verwendung von MA-Blattmaterial zeigte sich eine Kombination der Muster von M und A, sodass ein Chimärennachweis für das MA-Blattmaterial erbracht wurde. Für ein übertragbares System wurde die spezifische PCR getestet. Unter Verwendung spezifischer Primer für die 16s-rDNA zeigten die PCR-Produkte einheitliche Banden und nach anschließender Sequenzierung eine weitgehende Übereinstimmung der phylogenetischen Verwandtschaft von I, M und A. Weiterhin wurden die kernkodierten rDNA Bereiche ITS 1 und ITS 2 zwischen 18S und 25S getestet. Für I, M und A konnten jeweils zwei Banden von unterschiedlicher Größe und Sequenz ermittelt werden, die vermutlich auf funktionierende rDNA aber auch auf Pseudogene (beschnitten) in niedriger Kopienzahl hinweisen. Die ITS-Regionen von I, M und A wurden charakterisiert, um einen Einblick in die Struktur und Phylogenie der Salicacaee-Familie zu erhalten. Aus den Sequenzunterschieden konnten für I und A spezifische Primerpaare abgeleitet werden, die für die Identifizierung von I und A in AI und MA verwendet werden können. Mittels A-Marker konnte nachgewiesen werden, dass Fruchtknoten aus MA-Blüten neben M-Gewebe auch den A-Genotyp enthalten. / Two Populus graft chimeras (MA and AI) produced of P. x canadensis ‘Marilandica’ (M), P. maximowizcii x P. trichocarpa ‘Androscoggin’ (A) and P. nigra L. ’Italica’ (I) were used for investigations of leaf and flower development. In MA the exogenous layer (L1) forms the epidermis and is derived from M while inner layers (L2, L3 etc.) descend from A whereas in AI L1 is formed by A while L2, L3 etc. descend from I. The exogenous epidermis of the periclinal chimeras imposes morphological effects such as an extra female sex in some of the MA flowers. The morphological characteristics of different plant tissues of parents and chimera were compared to determine how they were modified or altered by the tissue transplantation and possibly identify co-existing or interacting genotypes in one tissue. RAPD-PCR was tested for its usefulness to amplify polymorphic fingerprints including donor specific DNA fragments. One random 10mer primer (GGAGTGGACA) out of 20 tested revealed the amplification of patterns including donor specific DNA bands using extracts from leaf tissues of the M and A parents that were combined using extract from leaf tissue of the MA chimera. This indicates that the leaves of the MA chimera are formed by tissues of M and A. However, the inherent disadvantage of RAPD-PCR is the reproducibility of PCR product generation. Therefore the discriminative potential of the ITS region located between the rRNA genes was investigated. The application of specific 16S ribosomal DNA (rDNA) primers for amplification and sequencing of PCR products revealed a closely phylogenetic relationship between I, M and A. Consequently the ITS1 and ITS2 of nuclear rDNA between 18S and 25S were used. The amplified fragments were purified, cloned in E. coli and sequenced. Analyses of multiple clones demonstrated extensive paralogy within and between I, M and A ITS operons. For each parent were at least two rDNA operons as well as multiple paralogous sequences within operons identified. The use of PCR and sequence analyses showed that one of the operons encodes a putative expressed (functional) rDNA whereas the second encodes a pseudogen (truncated) in low copy number. We also characterized the ITS regions of I, M and A to gain insights into structure and phylogeny of the Salicacaee family. Based on sequence divergence primers were designed for A and I and used for the identification of A in MA carpels.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16037 |
Date | 16 September 2005 |
Creators | Hansen, Mario Jens |
Contributors | Pohlheim, F., Zoglauer, K., Schröder, M.-B. |
Publisher | Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät |
Source Sets | Humboldt University of Berlin |
Language | German |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf, application/octet-stream, application/octet-stream |
Page generated in 0.0027 seconds