Return to search

Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field

The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up to order, as a product of prime elements. Unfortunately, not every ring possesses this property for its elements. The work of mathematicians like Kummer and Dedekind lead to the study of a special type of ring, which we now call a Dedekind domain, where even though unique prime factorization of elements may fail, the ideals of a Dedekind domain still enjoy the property of unique prime factorization into a product of prime ideals, up to order of the factors. This thesis seeks to establish the unique prime ideal factorization of ideals in a special type of Dedekind domain: the ring of algebraic integers of an imaginary quadratic number field.

Identiferoai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-1223
Date01 June 2015
CreatorsRezola, Nolberto
PublisherCSUSB ScholarWorks
Source SetsCalifornia State University San Bernardino
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses, Projects, and Dissertations

Page generated in 0.0024 seconds