Return to search

Simulations of Turbulence over Superhydrophobic Surfaces

Significant effort has been placed on the development of surfaces which reduce the amount of drag experienced by a fluid as it passes over the surface. Alterations to the fluid itself, as well as the chemical and physical composition of the surface have been investigated with varying success. Investigations into turbulent drag reduction have been mostly limited to those involving bubbles and riblets. Superhydrophobic surfaces, which combine hydrophobic surface chemistry with a regular array of microfeatures, have been shown to provide significant drag reduction in the laminar regime, with the possibility of extending these results into turbulent flows. Direct numerical simulations are used to investigate the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall shear stresses, and Reynolds stresses are considered for a variety of superhydrophobic surface microfeature geometry configurations at friction Reynolds numbers of Re = 180, Re = 395, and Re = 590. This work provides evidence that superhydrophobic surfaces are capable of reducing drag in turbulent flow situations by manipulating the laminar sublayer and turbulent energy cascade. For the largest micro-feature spacing of 90 microns an average slip velocity over 80% of the bulk velocity is obtained, and the wall shear stress reduction is found to be greater than 50%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress, but is offset by a slip velocity that increases with increasing micro-feature spacing.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1286
Date01 January 2009
CreatorsMartell, Michael B
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.003 seconds