Although rather inconspicuous on healthy coral reefs, macroalgae form the basis of coral food webs. Today, macroalgae are generally increasing and many reefs undergo transitions from coral to macroalgal dominance resulting from e.g. enhanced nutrient loading or increased fishing. This thesis aims to investigate the relative importance of top-down and bottom-up regulation, and different herbivore types, on macroalgal distribution, fecundity and community composition on coral reefs. Papers I and II indicate that macroalgal abundance in a coral reef system is largely governed by top-down regulation through grazing by herbivores, while bottom-up regulation through enhanced nutrient availability rather influence algal species composition. Paper II also shows that these regulating effects are not as evident in an area with relatively strong water motion, suggesting that impacts of anthropogenic disturbance may be site-specific. Paper III shows that herbivory is an important factor influencing macroalgal growth and subsequent reproduction. Furthermore, Paper IV and V conclude that efficiency in removing macroalgal biomass is dependent on the type of dominant herbivore, where sea urchins seem to be more effective than fish. Paper IV indicates a seasonal variation in macroalgal biomass and distribution in a small geographic scale but with relatively high temporal resolution. Paper V on the other hand shows these same effects, but with a focus on geographic variation, including a large part of the East African region, as well as between year temporal variations in Kenya. Together, results from the two latter studies indicate that herbivory by fish may not be able to prevent a macroalgal bloom in a degraded system where substrate availability for algal colonization is high, but that it may still facilitate coral recovery over time. Thus, a large algal biomass may not necessarily indicate a reef beyond the possibility of recovery. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 4: Manuscript. Paper 5: Manuscript.</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-48281 |
Date | January 2011 |
Creators | Mörk, Erik |
Publisher | Stockholms universitet, Systemekologiska institutionen, Stockholm : Department of Systems Ecology, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds