Return to search

SELF-SUFFICIENT OFF-GRID ENERGY SYSTEM FOR A ROWHOUSE USING PHOTOVOLTAIC PANELS COMBINED WITH HYDROGEN SYSTEM : Master thesis in energy system

It is known that Sweden is categorised by being one of the regions that experience low solar radiation because it is located in the northern hemisphere that has a low potential of solar radiation during the colder seasons. The government of Sweden aim to promote a more sustainable future by applying more renewable initiative in the energy sector. One of the initiatives is by applying more renewable energy where PV panels will play a greater role in our society and in the energy sector. However, the produced energy from the PV panels is unpredictable due to changes in radiation throughout the day. One great way to tackle this issue is by combining PV panels with different energy storage system. This thesis evaluates an off-grid rowhouse in Eskilstuna Sweden where the PV panels are combined with a heat pump, thermal storage tank, including batteries and hydrogen system. The yearly electrical demand is met by utilizing PV panels, battery system for short term usage and hydrogen system for long-term usage during the colder seasons. The yearly thermal demand is met by the thermal storage tank. The thermal storage tank is charged by heat losses from the hydrogen system and thermal energy from heat pump.The calculations were simulated in Excel and MATLAB where OPTI-CE is composed with different components in the energy system. Furthermore, the off-grid household was evaluated from an economic outlook with respect to today’s market including the potential price decrease in 2030.The results indicated that the selected household is technically practicable to produce enough energy. The PV panels produces 13 560 kWh annually where the total electrical demand reaches 6 125 kWh yearly (including required electricity for the heat pump). The annual energy demand in terms of electricity and thermal heat reaches 12 500 kWh which is covered by the simulated energy system. The overproduction is stored in the batteries and hydrogen storage for later use. The back-up diesel generator does not need to operate, indicating that energy system supplies enough energy for the off-grid household. The thermal storage tank stores enough thermal energy regarding to the thermal load and stores most of the heat during the summer when there are high heat losses due to the charge of the hydrogen system. The simulated energy system has a life cycle cost reaching approximately k$318 with a total lifetime of 25 years. A similar off-grid system has the potential to reduce the life cycle cost to k$195 if the energy system is built in 2030 with a similar lifespan. The reduction occurs due to the potential price reduction for different components utilized in the energy system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-49379
Date January 2020
CreatorsMaxamhud, Mahamed, Shanshal, Arkam
PublisherMälardalens högskola, Akademin för ekonomi, samhälle och teknik, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds