Return to search

Offline Reinforcement Learning for Scheduling Live Video Events in Large Enterprises

In modern times, live video streaming events in companies has become an increasingly relevantmethod for communications. As a platform provider for these events, being able to deliverrelevant recommendations for event scheduling times to users is an important feature. A systemproviding relevant recommendations to users can be described as a recommender system.Recommender systems usually face issues such as having to be trained purely offline, astraining the system online can be costly or time-consuming, requiring manual user feedback.While many solutions and advancements have been made in recommender systems over theyears, such as contributions in the Netflix Prize, it still continues to be an active research topic.This work aims at designing a recommender system which observes users' past sequentialscheduling behavior to provide relevant recommendations for scheduling upcoming live videoevents. The developed recommender system uses reinforcement learning as a model, withcomponents such as a generative model to help it learn from offline data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-478045
Date January 2022
CreatorsFranzén, Jonathan
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC IT, 1401-5749 ; 22015

Page generated in 0.0023 seconds