The effect of HZSM-5 catalyst and NaOH pretreatment on the product distribution and bio oil properties from pyrolysis of cellulose, hemicellulose and lignin model compounds was investigated at 450 °C. NaOH pretreated and untreated cellulose was pyrolyzed on sand and the HZSM-5 catalysts; VPISU001 HZSM-5, BASF HZSM-5, and Sud-Chemie HZSM-5. The pyrolysis of cellulose on BASF and Sud-Chemie HZSM-5 catalysts increased the yields of the organic liquid fraction, total liquid and char while decreasing the gas yields. However the catalyst decreased the organic and char yields while increasing the water yields but there was no change in gas yields. The NaOH treatment caused a decrease in the organic and total oil yields relative to the control but the char yield increased. The change in gas yields was not significant. The characterization of the oils using FTIR and ¹³C−nmr showed that, the VPISU001 HZSM-5 with and without NaOH pretreatment caused elimination of the levoglucosan fraction while increasing the aromatic fraction. The NaOH pretreated cellulose pyrolyzed on sand reduced the levoglucosan groups while increasing the aromatic fraction of the bio oil. In the hemicellulose studies, birchwood xylan and NaOH treated xylan samples were pyrolyzed on sand and VPISU001 HZSM-5 catalyst. The organic liquid yields were very low and ranged from 3.3 wt% to 7.2 wt%, the water yields ranged from 17.8-25.7 wt%, the char yield were 17.8-25 wt% and gas yield were 40.9-49.6 wt%. The HZSM-5 catalysts increased the water and gas yields and produced the lowest char yield. NaOH pretreatment produced the lowest water yield while the char yield was the highest. The combined effect of NaOH pretreatment and HZSM-5 produced the lowest organic yield and highest char yield. The FTIR and ¹³C-nmr analyses of the organic liquids showed that the HZSM-5 catalyst promoted the formation of aromatic products, while the NaOH pretreatment promoted the formation of aliphatic hydrocarbons. The combined effect of NaOH pretreatment and HZSM-5 catalyst seem to promote the formation of anhydrosugars. The main gases evolved were CO, CO₂ and low molecular weight hydrocarbons. The HZSM-5 catalyst promoted CO formation while NaOH pretreatment promoted CO₂. The HZSM-5 catalyst produced the highest yield of low molecular weight hydrocarbon gases. The lignin and model compounds studies involved using low molecular weight kraft lignin, guaiacol, and syringol which were pyrolyzed on sand and VPISU001 HZSM-5 catalyst at 450 °C. The kraft lignin pyrolysis produced low liquid and gas yields and high char yields. The HZSM-5 catalysts increased the water yield and decreased the organic liquid yield. NaOH pretreatment increased the char yield and decreased the liquid products. NaOH and the HZSM-5 catalyst together decreased the char and increased the gas yields. The ¹³C-nmr and FTIR analysis showed that NaOH pretreatment promoted the formation of mainly guaiacol while the HZSM-5 catalyst formed different aromatic components. NaOH pretreatment promoted the formation of more CO₂ than CO whilst HZSM-5 catalyst promoted the formation of more CO than CO₂. Methane formation was enhanced by NaOH pretreatment. Other hydrocarbon gases were however enhanced by the HZSM-5 catalysts. Pyrolysis of the model compounds on the HSZM-5 catalyst showed an increase in pyrolytic water. The HZSM-5 catalyst promoted demethylation in syringol pyrolysis as compared to guaiacol. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31251 |
Date | 10 March 2010 |
Creators | Atadana, Frederick Williams |
Contributors | Biological Systems Engineering, Agblevor, Foster Aryi, Barone, Justin R., Aning, Alexander O. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Atadana_FW_T_2010.pdf |
Page generated in 0.0028 seconds