Return to search

Problèmes inverses pour des problèmes d'évolution paraboliques à coefficients périodiques / Inverse problems for parabolic evolution problems with periodic coefficients

Ce travail de thèse est constitué de l'étude de deux problèmes inverses associés à des équations paraboliques à coefficients périodiques. Dans la première partie, on a considéré une équation parabolique à coefficients et condition initiale périodiques. Notre travail a consisté à aborder le cas de coefficient à régularité faible et à minimiser les contraintes d'observations requises pour établir notre résultat de reconstruction du potentiel. On a commencé par établir un résultat d'existence et d'unicité de la solution dans un espace d'énergie adéquat. Ensuite, on a énoncé un principe du maximum adapté aux hypothèses du problème étudié et on a travaillé avec des coefficients mesurables et bornés. Enfin, on a reconstruit le potentiel en établissant une inégalité de Carleman. Le résultat d'identification a été obtenu via une inégalité de stabilité de type Lipschitz. Dans le second travail, on s'est intéressé à la détermination d'un coefficient périodique en espace du terme de réaction dans une équation de réaction-diffusion définie dans l'espace entier $mathbb{R}$. On établit un résultat d'unicité en utilisant un nouveau type d'observations. La nature du problème étudié, posé dans l'espace $mathbb{R}$, nous a permis d'utiliser la notion de vitesse asymptotique de propagation. On a prouvé l'existence de cette vitesse et on l'a caractérisé. On a surdéterminé le problème inverse en choisissant une famille de conditions initiales à décroi-ssance exponentielle. Notre principal résultat est que ce coefficient est déterminé de façon unique, à une symétrie près, par l'observation d'un continuum de vitesses asymptotiques de propagation. / This thesis consists in the study of two problems associated to inverse para-bolic equations with periodic coefficients. We are interested in identifying one coefficient by using two different methods. In the first part, we consider a parabolic equation with periodic coefficients and periodic initial condition. Our work consists to consider the case of coefficient with weak regularity and to minimize the constraints of observations which are required to establish our reconstruction result. We establish a result of existence and uniqueness of the solution in adequate energy space. Then we prove a maximum principle adapted to the hypothesis of the problem studied and we work with measurable and bounded coefficients. Finally, we reconstruct the potential by establishing a Carleman estimate. The identification result was achieved via an inequality of stability. In the second work, we are interested to determine a periodic coefficient of the reaction term defined in the whole space $mathbb{R}$. We establish a uniqueness result by using a new type of observations. The nature of the studied problem allowed us to use the notion of asymptotic speed of propagation. We prove the existence of this speed and we give its characterization. We overdetermin the inverse problem by choosing a family of initial conditions exponentially decaying. Our main result is that the coefficient is uniquely determined up to a symmetry, by the observation of a continuum of asymptotic speed of propagation.

Identiferoai:union.ndltd.org:theses.fr/2014AIXM4322
Date23 June 2014
CreatorsKaddouri, Isma
ContributorsAix-Marseille, Université des sciences et de la technologie Houari Boumediene (Alger), Cristofol, Michel, Teniou, Djamel Eddine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds