Cette thèse est consacrée à deux types de problèmes.<br />Le premier et principal aspect de ce travail concerne l'analyse semi-classique de la plus petite valeur propre $\la_1(B,\A)$ de la réalisation de Neumann de l'opérateur de Schrödinger magnétique $(i\nabla+B\A)^2$ dans le cas où le champ magnétique $\bbeta=\nabla\times\A$ n'est pas uniforme. Plus précisément, en dimension 2, nous établissons un développement asymptotique à deux termes de $\la_1(B,\A)$ lorsque $B$ tend vers l'infini et démontrons simultanément des résultats de localisation pour les premières fonctions propres correspondantes ; pour ce qui est du problème en dimension 3, nous étudions d'une part des estimations uniformes pour une famille de champs magnétiques d'intensité constante (en vue de l'application à une famille spéciale apparaissant à l'occasion de la théorie des cristaux liquides) et d'autre part nous nous plaçons dans des hypothèses génériques sur le champ magnétique et prouvons une majoration qui laisse conjecturer l'expression des deuxième et troisième termes du développement asymptotique.<br />Le deuxième aspect de cette thèse est l'étude de la transition de phase en théorie des cristaux liquides. Nous mettons en évidence une température critique pour la fonctionnelle de Landau-de Gennes qui permet de déterminer, lorsque certains coefficients de la fonctionnelle appelés constantes d'élasticité explosent, la phase dans laquelle se trouve le cristal liquide (nématique ou smectique). Par ailleurs, nous sommes amenés à introduire une nouvelle fonctionnelle (en imposant une condition de Dirichlet non homogène) en vue d'obtenir des informations plus quantitatives.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00424859 |
Date | 12 October 2009 |
Creators | Raymond, Nicolas |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds