Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par une approximation polynomiale p. On le fait, par exemple, pour implanter des fonctions élémentaires en machine, pour la quadrature ou la résolution d'équations différentielles ordinaires (ODE). De nombreuses méthodes numériques existent pour l'ensemble de ces questions et nous nous proposons de les aborder dans le cadre du calcul rigoureux, au sein duquel on exige des garanties sur la précision des résultats, tant pour l'erreur de méthode que l'erreur d'arrondi.Une approximation polynomiale rigoureuse (RPA) pour une fonction f définie sur un intervalle [a,b], est un couple (P, Delta) formé par un polynôme P et un intervalle Delta, tel que f(x)-P(x) appartienne à Delta pour tout x dans [a,b].Dans ce travail, nous analysons et introduisons plusieurs procédés de calcul de RPAs dans le cas de fonctions univariées. Nous analysons et raffinons une approche existante à base de développements de Taylor.Puis nous les remplaçons par des approximants plus fins, tels que les polynômes minimax, les séries tronquées de Chebyshev ou les interpolants de Chebyshev.Nous présentons aussi plusieurs applications: une relative à l'implantation de fonctions standard dans une bibliothèque mathématique (libm), une portant sur le calcul de développements tronqués en séries de Chebyshev de solutions d'ODE linéaires à coefficients polynômiaux et, enfin, un processus automatique d'évaluation de fonction à précision garantie sur une puce reconfigurable. / For purposes of evaluation and manipulation, mathematical functions f are commonly replaced by approximation polynomials p. Examples include floating-point implementations of elementary functions, integration, ordinary differential equations (ODE) solving. For that, a wide range of numerical methods exists. We consider the application of such methods in the context of rigorous computing, where we need guarantees on the accuracy of the result, with respect to both the truncation and rounding errors.A rigorous polynomial approximation (RPA) for a function f defined over an interval [a,b] is a couple (P, Delta) where P is a polynomial and Delta is an interval such that f(x)-P(x) belongs to Delta, for all x in [a,b]. In this work we analyse and bring forth several ways of obtaining RPAs for univariate functions. Firstly, we analyse and refine an existing approach based on Taylor expansions. Secondly, we replace them with better approximations such as minimax approximations, Chebyshev truncated series or interpolation polynomials.Several applications are presented: one from standard functions implementation in mathematical libraries (libm), another regarding the computation of Chebyshev series expansions solutions of linear ODEs with polynomial coefficients, and finally an automatic process for function evaluation with guaranteed accuracy in reconfigurable hardware.
Identifer | oai:union.ndltd.org:theses.fr/2011ENSL0655 |
Date | 26 September 2011 |
Creators | Joldes, Mioara Maria |
Contributors | Lyon, École normale supérieure, Muller, Jean-Michel, Brisebarre, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds