A cristalização assistida por destilação com membranas (membrane distillation crystallization, MDC) se destaca como uma alternativa aos processos convencionais de cristalização evaporativa com múltiplos estágios e/ou recompressão mecânica de vapor para dessalinização de soluções aquosas concentradas com descarga zero de líquido (zero liquid discharge, ZLD) no meio ambiente. Os principais atrativos da MDC são as condições operacionais mais brandas de temperatura e pressão, o que possibilita o emprego de fontes de calor de baixa entalpia e instalações menos requisitadas mecanicamente. Entretanto, por ser um processo de separação que envolve membranas, a formação de incrustação se destaca como inconveniente. Assim sendo, grande parte dos estudos em MDC têm sido voltados para essa questão, com foco na operação de destilação com membranas (membrane distillation, MD), quando o produto de interesse é a água recuperada. Nesse contexto, esta tese amplia o conhecimento na área, sendo estudados os fundamentos de cristalização e a sua relação com parâmetros selecionados do processo. Dessa forma, estudos teórico-experimentais foram conduzidos investigando os mecanismos de cristalização predominantes nesse, de maneira a ampliar a abrangência das teorias clássicas de cristalização. No primeiro capítulo, realizou-se uma revisão bibliográfica a fim de apresentar os fundamentos tecnológicos, bem como as características, limitações e desafios para consolidação em escala industrial da MDC. No segundo capítulo, foi definido o conhecimento científico produzido através da especificação de objetivos. No terceiro capítulo, a operação MD na configuração DCMD (direct contact membrane distillation) foi caracterizada utilizando equações matemáticas para o cálculo do fluxo de vapor. Os valores calculados foram validados com experimentos em escala de bancada. Foi possível identificar que a difusão ordinária molecular é o mecanismo de transporte de massa dominante nos poros da membrana, e quantificar os fenômenos de polarizações de temperatura e de concentração adjacentes à superfície da membrana. No quarto capítulo, a cristalização foi integrada com a DCMD e explorada em uma unidade de bancada. Os processos elementares e acessórios de cristalização predominantes foram esclarecidos como sendo nucleação primária heterogênea (incrustação por cristalização), nucleação secundária (abrasão de cristais) e crescimento cristalino molecular (aumento de tamanho). O quinto capítulo versou sobre uma estratégia proposta para reduzir a nucleação primária heterogênea, força motriz da incrustação por cristalização na membrana. Com base nos processos elementares e acessórios de cristalização identificados, foi avaliada uma modificação na MDC, a submersão de membranas em cristalizador, a qual foi implementada em escala de bancada. Essa modificação se mostrou mais sensível à formação de incrustação, com possibilidade de se encontrar condições favoráveis, uma vez que foi possível operar o processo durante três horas sem desenvolvimento de incrustação na membrana (tempo máximo investigado), mas precisa ser melhor investigada. Por último, no sexto capítulo abordou-se a nucleação primária heterogênea, relacionando esta com a queda de fluxo de vapor e com a distribuição de sólidos formados. O equacionamento do sistema validado no terceiro capítulo foi aplicado para quantificação da supersaturação local na membrana e respectiva associação com os mecanismos de cristalização. Observou-se que o aumento de fluxo aumenta a supersaturação local, que aumenta a nucleação primária heterogênea, sendo essa responsável pela formação de cristais que permaneceram aderidos na membrana (incrustação por cristalização) e que foram soltos em solução (suspensão). Os cristais soltos em solução são predominantes. A fluidodinâmica de escoamento (geometria dos módulos de membranas) associada à supersaturação local (fluxo de vapor) impactam no desprendimento de cristais na membrana originados por nucleação primária heterogênea. Com o aumento de supersaturação local, o desprendimento de cristais em suspensão é favorecido em módulo de membranas do tipo fibras ocas, enquanto não afeta o módulo do tipo tubular. Em seu conjunto, esta tese contribui para a melhoria do entendimento de aspectos fundamentais selecionados do processo MDC e para o emprego deste conhecimento em situações de interesse prático. / Membrane distillation crystallization (MDC) stand as an alternative to conventional evaporative crystallization processes with multiple-stage evaporator and/or mechanical vapor recompression towards concentrated brine desalination aiming at zero liquid discharge (ZLD) in the environment. The major advantages of MDC are the moderate temperature and pressure conditions, which allow the use of low enthalpy heat sources and facilities less mechanically required. However, as in membrane separation processes, membrane fouling plays an important role in MDC. Therefore, most MDC studies have been focused on that, with emphasis on membrane distillation (MD) operation, when the product of interest is the recovered water. In this context, this thesis extends the knowledge in the field, wherein the crystallization fundamentals and its relation with selected process parameters were studied. Thus, theoretical and experimental approaches were carried out in order to investigate the prevailing crystallization mechanisms in the process, so the range of the current crystallization theories could be extended. In the first chapter, a literature review was carried out in order to introduce selected fundamental concepts, as well as the process characteristics, limitations and challenges for industrial consolidation. In the second chapter, the scientific knowledge produced by this work was defined in its objectives. In the third chapter, the MD operation in direct contact configuration (DCMD) was characterized using mathematical equations for the calculation of vapor flux and validated with experimental data in a bench scale unit. The dominant mechanism of mass transport in porous media was found to be the ordinary molecular diffusion and the temperature and concentration polarization effects were quantified in the vicinity of membrane surface. In the fourth chapter, the crystallization operation was integrated with DCMD and investigated in a bench scale unit. The elementary and accessory crystallization mechanisms were highlighted as heterogeneous primary nucleation (crystallization fouling), secondary nucleation (crystal abrasion) and crystalline molecular growth (increase in size). The fifth chapter describes a strategy proposed in order to reduce heterogeneous primary nucleation, the driving force of membrane crystallization fouling. Based on the featured crystallization mechanisms, a modification in the conventional MDC operation was evaluated, the submersion of membranes into the crystallizer vessel, which was implemented in a bench scale unit. The preliminary results showed that this modification is more sensitive to crystallization fouling, with possibility to find promising conditions, once it was possible to operate during three hours without development of crystallization fouling (maximum period of time investigated), but further investigation is needed. Lastly, in the sixth chapter, the primary heterogeneous nucleation mechanism was explored, associating it to flux decay and solid distribution in the unit. The system equations validated in the third chapter were applied in order to quantify the supersaturation ratio generated in the vicinity of membrane surface and respective association with crystallization mechanisms. It was observed that increasing the vapor flux, the local supersaturation ratio also increase and, as consequence, the primary heterogeneous nucleation as well. This mechanism is responsible for the formation of crystals that remained adhered on membrane surface (crystallization fouling) and released in solution (suspension). The portion of crystals loose in solution was predominantly formed. The fluid dynamic of flow (geometry of membrane module) associated with the local supersaturation ratio (vapor flux) impact in the detachment of crystals in the membrane surface, originated by heterogeneous primary nucleation. With an increase in the local supersaturation ratio, the detachment of crystals is increased in the hollow fiber membrane module, while in the tubular module the detachment of crystals does not change. As a whole, this thesis contributes to a better understanding of MDC selected fundamental aspects and to the use of this knowledge in practical situations.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22092016-091528 |
Date | 09 August 2016 |
Creators | Yuri Nascimento Nariyoshi |
Contributors | Marcelo Martins Seckler, Rodrigo Condotta, Roberto Guardani, José Carlos Mierzwa, Sônia Denise Ferreira Rocha |
Publisher | Universidade de São Paulo, Engenharia Química, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds