Return to search

Mining for Lung Cancer Biomarkers in Plasma Metabolomics Data / Sökande efter Biomarkörer för Lungcancer genom Analys av Metabolitdata

<p>Lung cancer is the cancer form that has the highest mortality worldwide and inaddition the survival of lung cancer is very low. Only 15% of the patients are alivefive years from set diagnosis. More research is needed to understand the biologyof lung cancer and thus make it possible to discover the disease at an early stage.Early diagnosis leads to an increased chance of survival. In this thesis 179 lungcancer- and 116 control samples of blood serum were analyzed for identificationof metabolomic biomarkers. The control samples were derived from patients withbenign lung diseases.Data was gained from GC/TOF-MS analysis and analyzed with the help ofthe multivariate analysis methods PCA and OPLS/OPLS-DA. In this thesis it isinvestigated how to pre-treat and analyze the data in the best way in order todiscover biomarkers. One part of the aim was to give directions for how to selectsamples from a biobank for further biological validation of suspected biomarkers.Models for different stages of lung cancer versus control samples were computedand validated. The most influencing metabolites in the models were selected andconfoundings with other clinical characteristics like gender and hemoglobin levelswere studied. 13 lung cancer biomakers were identified and validated by raw dataand new OPLS models based solely upon the biomarkers.In summary the identified biomarkers are able to separate fairly good betweencontrol samples and late lung cancer, but are poor for separation of early lungcancer from control samples. The recommendation is to select controls and latelung cancer samples from the biobank for further confirmation of the biomarkers.NyckelordLung cancer is the cancer form that has the highest mortality worldwide and inaddition the survival of lung cancer is very low. Only 15% of the patients are alivefive years from set diagnosis. More research is needed to understand the biologyof lung cancer and thus make it possible to discover the disease at an early stage.Early diagnosis leads to an increased chance of survival. In this thesis 179 lungcancer- and 116 control samples of blood serum were analyzed for identificationof metabolomic biomarkers. The control samples were derived from patients withbenign lung diseases.Data was gained from GC/TOF-MS analysis and analyzed with the help ofthe multivariate analysis methods PCA and OPLS/OPLS-DA. In this thesis it isinvestigated how to pre-treat and analyze the data in the best way in order todiscover biomarkers. One part of the aim was to give directions for how to selectsamples from a biobank for further biological validation of suspected biomarkers.Models for different stages of lung cancer versus control samples were computedand validated. The most influencing metabolites in the models were selected andconfoundings with other clinical characteristics like gender and hemoglobin levelswere studied. 13 lung cancer biomakers were identified and validated by raw dataand new OPLS models based solely upon the biomarkers.In summary the identified biomarkers are able to separate fairly good betweencontrol samples and late lung cancer, but are poor for separation of early lungcancer from control samples. The recommendation is to select controls and latelung cancer samples from the biobank for further confirmation of the biomarkers.Nyckelord</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-57670
Date January 2010
CreatorsJohnsson, Anna
PublisherLinköping University, Biotechnology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text
RelationLITH-IFM-A-EX--10/2363--SE

Page generated in 0.0014 seconds