Ingeniero Civil Matemático / En esta memoria se extiende el resultado de integración de Correa y Hantoute presentado en \cite{Correa1}, que dice que si un espacio de Banach $X$ tiene la propiedad de Radon-Nykod\'ym (RNP), entonces para todo par de funciones $f,g:X\to\Rex$ con $f$ epi-pointed y semicontinua inferior, y tal que $\partial f\subseteq \partial g$, se cumple que existe una constante $c\in\R$ tal que
\[ \cco f = \overline. \]
Se introduce la noción de funciones integrables, que tienen las condiciones necesarias y suficientes para que la fórmula de integración anterior se cumpla, independiente de la RNP. Además, se definen las funciones cuasi-integrables, que son aquellas funciones $f$ epi-pointed que sólo necesitan para ser integrables que exista un denso $D$ del interior del dominio de $f^*$ donde se satisfaga que
\[ \clss = \partial f^*(x^*),\quad\forall x^*\in D. \]
Se dan caracterizaciones de la ecuación anterior y luego se define la familia de espacios de Banach donde para toda función $f$ epi-pointed, su conjugada satisface dicha ecuación en un denso del interior de su dominio: Los espacios cuyo dual tiene la propiedad de continuidad del subdiferencial débil ($w$-SCP). Se muestra que esta es la familia de espacios de Banach más grande donde toda función cuasi-integrable es integrable. Se termina la memoria dando varias caracterizaciones de los espacios cuyo dual tiene la $w$-SCP y se plantean algunas conjeturas sobre la estructura de los mismos.
Identifer | oai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/114677 |
Date | January 2013 |
Creators | Salas Videla, David Sebastián |
Contributors | Correa Fontecilla, Rafael, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática, Hantoute, Abderrahim, Daniilidis, Aris |
Publisher | Universidad de Chile |
Source Sets | Universidad de Chile |
Language | Spanish |
Detected Language | Spanish |
Type | Tesis |
Rights | Attribution-NonCommercial-NoDerivs 3.0 Chile, http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ |
Page generated in 0.0018 seconds