Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.
Identifer | oai:union.ndltd.org:ADTP/187429 |
Date | January 2007 |
Creators | Raffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0016 seconds