Return to search

Functional calculus and coadjoint orbits.

Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.

Identiferoai:union.ndltd.org:ADTP/187429
Date January 2007
CreatorsRaffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0016 seconds