Spelling suggestions: "subject:"2oment map."" "subject:"böjmoment map.""
1 |
Symplectic convexity theorems and applications to the structure theory of semisimple Lie groupsOtto, Michael 18 June 2004 (has links)
No description available.
|
2 |
The ASD equations in split signature and hypersymplectic geometryRoeser, Markus Karl January 2012 (has links)
This thesis is mainly concerned with the study of hypersymplectic structures in gauge theory. These structures arise via applications of the hypersymplectic quotient construction to the action of the gauge group on certain spaces of connections and Higgs fields. Motivated by Kobayashi-Hitchin correspondences in the case of hyperkähler moduli spaces, we first study the relationship between hypersymplectic, complex and paracomplex quotients in the spirit of Kirwan's work relating Kähler quotients to GIT quotients. We then study dimensional reductions of the ASD equations on $mathbb R^{2,2}$. We discuss a version of twistor theory for hypersymplectic manifolds, which we use to put the ASD equations into Lax form. Next, we study Schmid's equations from the viewpoint of hypersymplectic quotients and examine the local product structure of the moduli space. Then we turn towards the integrability aspects of this system. We deduce various properties of the spectral curve associated to a solution and provide explicit solutions with cyclic symmetry. Hitchin's harmonic map equations are the split signature analogue of the self-duality equations on a Riemann surface, in which case it is known that there is a smooth hyperkähler moduli space. In the case at hand, we cannot expect to obtain a globally well-behaved moduli space. However, we are able to construct a smooth open set of solutions with small Higgs field, on which we then analyse the hypersymplectic geometry. In particular, we exhibit the local product structures and the family of complex structures. This is done by interpreting the equations as describing certain geodesics on the moduli space of unitary connections. Using this picture we relate the degeneracy locus to geodesics with conjugate endpoints. Finally, we present a split signature version of the ADHM construction for so-called split signature instantons on $S^2 imes S^2$, which can be given an interpretation as a hypersymplectic quotient.
|
3 |
Functional calculus and coadjoint orbits.Raffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW January 2007 (has links)
Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.
|
4 |
Non-Abelian reduction in deformation quantizationFedosov, Boris January 1997 (has links)
We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant
deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).
|
5 |
Functional calculus and coadjoint orbits.Raffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW January 2007 (has links)
Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.
|
6 |
[en] DELZANT S CONSTRUCTION FOR TORIC SYMPLECTIC MANIFOLDS / [pt] A CONSTRUÇÃO DE DELZANT PARA VARIEDADES TÓRICAS SIMPLÉTICASSIMONE DE FREITAS DE SOUZA 04 February 2019 (has links)
[pt] Em 1988, Delzant classificou as variedades compactas tóricas simpléticas por meio da imagem associada da aplicação momento. Como estabelecido pelo Teorema de Convexidade [Atiyah, Guillemin-Sternberg, 1983], a
imagem pela aplicação momento de uma variedade compacta tórica simplética é um polítopo convexo. A construção de Delzant proporciona uma receita para formar, dado um polítopo de Delzant, uma variedade compacta tórica simplética. Nesta dissertação revisamos essa construção e estudamos alguns exemplos. / [en] In 1988, Delzant proved a classification Theorem of compact toric symplectic manifolds by means of their moment image. By the convexity Theorem [Atiyah, Guillemin-Sternberg, 1983] the moment image of a compact toric symplectic manifold is a convex polytope. Delzant s construction gives a recipe to construct, given a Delzant polytope, the corresponding compact toric symplectic manifold. This thesis describes this construction and studies in detail some examples.
|
7 |
Séparation des représentations des groupes de Lie par des ensembles moments / Separation of Lie group representations with moment setsZergane, Amel 17 December 2011 (has links)
Si (π, H) est une représentation unitaire irréductible d'un groupe de Lie G, on sait lui associer son application moment Ψπ. La fermeture de l'image de Ψπ s'appelle l'ensemble moment de π. Généralement, cet ensemble est Conv(Oπ), si Oπ est l'orbite coadjointe associée à π. Mais il ne caractérise pas π : deux orbites distinctes peuvent avoir la même enveloppe convexe fermée. On peut contourner cette non séparation en considérant un surgroupe G+ de G et une application non linéaire ø de g* dans (g+)* telle que, pour les orbites générique, ø(O) est une orbite et Conv (ø(O)) caractérise O. Dans cette thèse, on montre que l'on peut choisir le couple (G+, ø), avec ø de degré ≤ 2 pour tous les groupes nilpotents de dimension ≤ 6, à une exception près, tous les groupes résolubles de dimension ≤ 4, et pour un exemple de groupe de déplacements. Ensuite, on étudie le cas des groupes G = SL(n, R). Pour ces groupes, il existe un tel couple avec ø de degré n, mais il n'en existe pas avec ø de degré 2 si n>2, il n'en existe pas avec ø de degré 3 si n=4. Enfin, on montre que l'application moment Ψπ est celle d'une action fortement hamiltonienne de G sur la variété de Fréchet symplectique PH∞. On construit un foncteur qui associe à tout G un surgroupe de Lie Fréchet G̃, de dimension infinie et, à tout π de G, une action π̃ fortement hamiltonienne, dont l'ensemble moment caractérise π / To a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
|
8 |
Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généraliséesAscah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$
Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$.
After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
|
9 |
Les actions de groupes en géométrie symplectique et l'application momentPayette, Jordan 11 1900 (has links)
Ce mémoire porte sur quelques notions appropriées d'actions de groupe sur les variétés symplectiques, à savoir en ordre décroissant de généralité : les actions symplectiques, les actions faiblement hamiltoniennes et les actions hamiltoniennes. Une connaissance des actions de groupes et de la géométrie symplectique étant prérequise, deux chapitres sont consacrés à des présentations élémentaires de ces sujets. Le cas des actions hamiltoniennes est étudié en détail au quatrième chapitre : l'importante application moment y est définie et plusieurs résultats concernant les orbites de la représentation coadjointe, tels que les théorèmes de Kirillov et de Kostant-Souriau, y sont démontrés. Le dernier chapitre se concentre sur les actions hamiltoniennes des tores, l'objectif étant de démontrer le théorème de convexité d'Atiyha-Guillemin-Sternberg. Une discussion d'un théorème de classification de Delzant-Laudenbach est aussi donnée. La présentation se voulant une introduction assez exhaustive à la théorie des actions hamiltoniennes, presque tous les résultats énoncés sont accompagnés de preuves complètes. Divers exemples sont étudiés afin d'aider à bien comprendre les aspects plus subtils qui sont considérés. Plusieurs sujets connexes sont abordés, dont la préquantification géométrique et la réduction de Marsden-Weinstein. / This Master thesis is concerned with some natural notions of group actions on symplectic manifolds, which are in decreasing order of generality : symplectic actions, weakly hamiltonian actions and hamiltonian actions. A knowledge of group actions and of symplectic geometry is a prerequisite ; two chapters are devoted to a coverage of the basics of these subjects. The case of hamiltonian actions is studied in detail in the fourth chapter : the important moment map is introduced and several results on the orbits of the coadjoint representation are proved, such as Kirillov's and Kostant-Souriau's theorems. The last chapter concentrates on hamiltonian actions by tori, the main result being a proof of Atiyah-Guillemin-Sternberg's convexity theorem. A classification theorem by Delzant and Laudenbach is also discussed. The presentation is intended to be a rather exhaustive introduction to the theory of hamiltonian actions, with complete proofs to almost all the results. Many examples help for a better understanding of the most tricky concepts. Several connected topics are mentioned, for instance geometric prequantization and Marsden-Weinstein reduction.
|
10 |
Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généraliséesAscah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$
Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$.
After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
|
Page generated in 0.071 seconds