The catalytic activation of enones in C-C bond forming processes represents a promising alternative to the prefabrication of chemically labile enols and enolates. Through the use of a (diketonato)cobalt/silane catalyst system, we have devised highly diastereoselective aldol and Michael cycloreductions (J. Am. Chem. Soc. 2001, 123, 5112). Modulation of the catalyst system has enabled the first intramolecular metal-catalyzed alkene (2+2)cycloaddition (J. Am. Chem. Soc. 2001, 123, 6716). Finally, the concept of catalytic nucleophilic enone activation embodied by the Morita-Baylis- Hillman and Rauhut Currier reactions has been utilized to develop an organic catalyst system for the cycloisomerization of bis-enones, i.e. an intramolecular Rauhut Currier reaction (J. Am. Chem. Soc. 2002, 124, 2402). Notably, this protocol allowed for the selective "crossed" cyclization of unsymmetrical bis-enone substrates. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/29634 |
Date | 28 April 2015 |
Creators | Luis, Ana Liza |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0016 seconds