Return to search

Transition metal- and organo-catalyzed cycloreductions, cycloadditions and cycloisomerizations

The catalytic activation of enones in C-C bond forming processes represents a promising alternative to the prefabrication of chemically labile enols and enolates. Through the use of a (diketonato)cobalt/silane catalyst system, we have devised highly diastereoselective aldol and Michael cycloreductions (J. Am. Chem. Soc. 2001, 123, 5112). Modulation of the catalyst system has enabled the first intramolecular metal-catalyzed alkene (2+2)cycloaddition (J. Am. Chem. Soc. 2001, 123, 6716). Finally, the concept of catalytic nucleophilic enone activation embodied by the Morita-Baylis- Hillman and Rauhut Currier reactions has been utilized to develop an organic catalyst system for the cycloisomerization of bis-enones, i.e. an intramolecular Rauhut Currier reaction (J. Am. Chem. Soc. 2002, 124, 2402). Notably, this protocol allowed for the selective "crossed" cyclization of unsymmetrical bis-enone substrates. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/29634
Date28 April 2015
CreatorsLuis, Ana Liza
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0016 seconds