Les travaux de la thèse portent sur la résolution des équations de Stokes, d'abord avec des conditions au bord portant sur la composante normale du champ de vitesse et la composante tangentielle du tourbillon, ensuite avec des conditions au bord portant sur la pression et la composante tangentielle du champ de vitesse. Dans chaque cas nous démontrons l'existence, l'unicité et la régularité de la solution. Nous traitons aussi le cas de solutions très faibles, par dualité. Le cadre fonctionnel que nous avons choisi est celui des espaces de Banach du type H(div) et H(rot) ou l'intersection des deux, basés sur l'espace Lp , avec 1 < p < ∞. En particulier, on se place dans des domaines non simplement connexes, avec des frontières non connexes. Nous nous intéressons en premier lieu à l'obtention d'inégalités de Sobolev pour des champs de vecteurs u ∈ Lp (Ω). Dans un second temps, nous établissons des résultats d'existence pour les potentiels vecteurs avec diverses conditions aux limites. Ceci nous permet d'abord d'effectuer des décompositions de type Helmholtz et ensuite de démontrer des conditions Inf − Sup lorsque la forme bilinéaire est un produit de rotationnels. Ces conditions aux limites font que l'équation de la pression est indépendante des autres variables. C'est la raison pour laquelle nous sommes naturellement conduit à étudier les problèmes elliptiques qui se traduisent par les systèmes de Stokes sans la pression. La résolution de ces problèmes se fait au moyen des Conditions Inf − Sup qui jouent un rôle clef pour établir l'existence et l'unicité de solutions. Nous donnons une applications aux systèmes de Navier-Stokes, où on obtient l'existence d'une solution en effectuant un point fi xe autour du problème d'Oseen. Enfi n, deux méthodes numériques sont proposées pour approcher le problème de Stokes. Nous analysons d'abord une méthode de Nitsche et puis une méthode de Galerkin discontinu. Quelques résultats numériques de convergence sont décrits qui sont parfaitement cohérents avec l'analyse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00687740 |
Date | 02 December 2010 |
Creators | Seloula, Nour El Houda |
Publisher | Université de Pau et des Pays de l'Adour |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0078 seconds