• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 10
  • 9
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Green's functions for preconditioning

Loghin, Daniel January 1999 (has links)
No description available.
2

Analysis and numerics of the singularly perturbed Oseen equations / Analysis und Numerik der singulär gestörten Oseen-Gleichungen

Höhne, Katharina 16 November 2015 (has links) (PDF)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.
3

Analysis and numerics of the singularly perturbed Oseen equations

Höhne, Katharina 05 November 2015 (has links)
Be it in the weather forecast or while swimming in the Baltic Sea, in almost every aspect of every day life we are confronted with flow phenomena. A common model to describe the motion of viscous incompressible fluids are the Navier-Stokes equations. These equations are not only relevant in the field of physics, but they are also of great interest in a purely mathematical sense. One of the difficulties of the Navier-Stokes equations originates from a non-linear term. In this thesis, we consider the Oseen equations as a linearisation of the Navier-Stokes equations. We restrict ourselves to the two-dimensional case. Our domain will be the unit square. The aim of this thesis is to find a suitable numerical method to overcome known instabilities in discretising these equations. One instability arises due to layers of the analytical solution. Another instability comes from a divergence constraint, where one gets poor numerical accuracy when the irrotational part of the right-hand side of the equations is large. For the first cause, we investigate the layer behaviour of the analytical solution of the corresponding stream function of the problem. Assuming a solution decomposition into a smooth part and layer parts, we create layer-adapted meshes in Chapter 3. Using these meshes, we introduce a numerical method for equations whose solutions are of the assumed structure in Chapter 4. To reduce the instability caused by the divergence constraint, we add a grad-div stabilisation term to the standard Galerkin formulation. We consider Taylor-Hood elements and elements with a discontinous pressure space. We can show that there exists an error bound which is independent of our perturbation parameter and get information about the convergence rate of the method. Numerical experiments in Chapter 5 confirm our theoretical results.:Acknowledgement III Notation IV 1 Introduction 1 1.1 Existence of solutions 2 1.2 Transformation into a fourth-order problem 4 2 Asymptotic analysis 6 2.1 A fourth-order problem in 1D 6 2.2 A fourth-order problem in 2D 14 2.2.1 Asymptotic expansion 19 2.2.2 Estimation of the residual 26 2.2.3 Asymptotic expansion without compatibility conditions 30 3 Solution decomposition and layer-adapted meshes 32 3.1 Solution decomposition 32 3.2 Layer-adapted meshes 33 3.3 Interpolation errors on layer-adapted meshes 36 4 Galerkin method and stabilisation 41 4.1 Discrete problem and stabilised formulation 41 4.2 A priori error estimates 44 5 Numerical results 48 5.1 Numerical evaluation of inf-sup constants 48 5.1.1 Theoretical aspects 48 5.1.2 Numerical results for β0 and B0 50 5.2 Convergence studies 53 5.2.1 Uniformity in ε 54 5.2.2 Convergence order 55 5.2.3 Necessity of stabilisation 56 5.2.4 Further experiments without known exact solution 56 6 Conclusions and outlook 60 A Numerical study of the stability estimate (2.35) 62 Bibliography 67
4

Problemas inversos y controlabilidad en modelos de la mecánica de fluidos

Zamorano Aliaga, Sebastián Andrés January 2016 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis doctoral está dedicada al estudio de problemas inversos y de control en el área de la mecánica de fluidos. Nos centramos en las ecuaciones de Stokes y de Navier Stokes, tanto sistemas estacionarios como evolutivos, los cuales son bien conocidos para el desarrollo matemático de los flujos viscosos incompresibles. En concreto, se analizaron tres temas principales: Realizamos la estimación del tamaño de una cavidad D inmersa en un dominio acotado Ω ⊂ Rd, d = 2, 3, lleno de un fluido viscoso el cual se rige por el sistema de Stokes, por medio de la velocidad y las fuerzas de Cauchy en la frontera ∂Ω. Más precisamente, establecemos una cota inferior y superior en términos de la diferencia entre las mediciones externas cuando el obstáculo está presente y cuando no lo está. La demostración del resultado se basa en los resultados de regularidad interior y estimaciones cuantitativas de continuación única para la solución del sistema de Stokes. Desarrollamos el estudio del fenómeno del turnpike que surge en el problema de control de seguimiento óptimo distribuido para las ecuaciones de Navier Stokes. Obtenemos una respuesta positiva a esta propiedad en el caso de que los controles son funciones dependientes del tiempo, y también cuando son independientes del tiempo. En ambos casos se prueba una propiedad de turnpike exponencial, bajo el supuesto que el estado óptimo estacionario satisface ciertas propiedades de pequeñez. Consideramos las ecuaciones de Stokes evolutivas con viscosidad no constante. En primer lugar adaptamos la construcción de soluciones del tipo óptica geométrica complejas apropiadas para una ecuación de Stokes estacionaria modificada, con el fin de demostrar un resultado de identificabilidad siguiendo el enfoque dado por Uhlmann [110] y de Heck et al. [62]. Luego, se estudia la identificabilidad global para la función de viscosidad por medio de mediciones de contorno reduciendo el problema al caso estacionario, cuando consideramos el horizonte de tiempo suficientemente grande. / Este trabajo ha sido financiado por CONICYT
5

Aerodynamische Wirkung schnell bewegter bodennaher Körper auf ruhende Objekte / Aerodynamic loads on resting objects induced by fast-moving near-ground bodies

Rutschmann, Sabrina 09 May 2017 (has links)
No description available.
6

Solution of Nonlinear Transient Heat Transfer Problems

Buckley, Donovan O 09 November 2010 (has links)
In the presented thesis work, meshfree method with distance fields was extended to obtain solution of nonlinear transient heat transfer problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the meshfree method with distance fields were investigated. Convergence and accuracy of the methodology was validated by analytical solutions, and solutions produced by commercial FEM software (ANSYS 12.1). The research was focused on nonlinearities caused by temperature-dependent thermal conductivity. The behavior of the developed numerical algorithms was observed for both weak and strong temperature-dependency of thermal conductivity. Oseen and Newton-Kantorovich linearization techniques were applied to linearized the governing equation and boundary conditions. Results of the numerical experiments showed that the meshfree method with distance fields has the potential to produced fast accurate solutions. The method enables all prescribed boundary conditions to be satisfied exactly.
7

Boundary Versus Interior Defects for a Ginzburg-Landau Model with Tangential Anchoring Conditions

van Brussel, Lee January 2022 (has links)
In this thesis, we study six Ginzburg-Landau minimization problems in the context of two-dimensional nematic liquid crystals with the intention of finding conditions for the existence of boundary vortices. The first minimization problem consists of the standard Ginzburg-Landau energy on bounded, simply connected domains Ω ⊂ R2 with boundary energy penalizing minimizers who stray from being parallel to some smooth S1-valued boundary function g of degree D ≥ 1. The second and third minimization problems consider the same Ginzburg-Landau energy but now with divergence and curl penalization in the interior and boundary function taken to be g = τ, the positively oriented unit tangent vector to the boundary. The remaining three problems involve minimizing the same energies, but now over the set for which all functions are precisely parallel to the given boundary data (up to a set for which their norms can be zero). These six problems are classified under two categories called the weak and strong orthogonal problems. In each of the six problems, we show that conditions exist for which sequences of minimizers converge to a limiting S1-valued vector field describing an equilibrium configuration for nematic material with defects. In some cases, energy estimates are obtained that show vortices belong to the boundary exclusively and the exact number of these vortices are known. A special case is also studied in the strong orthogonality setting. The analysis here suggests that geometries exist for which boundary vortices may be energetically preferable to interior vortices in the case where interior and boundary vortices have similar energy contributions. / Thesis / Doctor of Philosophy (PhD)
8

Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. / Stokes and Oseen equations in an exterior domain with different boundary conditions.

Meslameni, Mohamed 01 March 2013 (has links)
On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme les domaines extérieurs, en dimension trois et l'espace tout entier. Le but est d'étudier l'existence de solutions généralisés et de solutions fortes dans un cadre général non nécessairement hilbertien. On s'intéresse aussi au cas des solutions très faibles. Dans ce travail, on considère aussi bien des conditions aux limites classiques de type Dirichlet que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses, du tourbillon, voir du champ de pression. Les espaces de Sobolev classiques ne sont pas adaptés à l'étude de ces problèmes pour une telle géométrie. Pour une bonne analyse mathématique, nous avons choisi de travailler dans le cadre des espaces de Sobolev avec poids, ce qui permet en particulier de mieux contrôler le comportement à l'infini de la solution. / In this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces.
9

Computational Investigation of Steady Navier-Stokes Flows Past a Circular Obstacle in Two--Dimensional Unbounded Domain

Gustafsson, Carl Fredrik Jonathan 04 1900 (has links)
<p>This thesis is a numerical investigation of two-dimensional steady flows past a circular obstacle. In the fluid dynamics research there are few computational results concerning the structure of the steady wake flows at Reynolds numbers larger than 100, and the state-of-the-art results go back to the work of Fornberg (1980) Fornberg (1985). The radial velocity component approaches its asymptotic value relatively slowly if the solution is ``physically reasonable''. This presents a difficulty when using the standard approach such as domain truncation. To get around this problem, in the present research we will develop a spectral technique for the solution of the steady Navier-Stokes system. We introduce the ``bootstrap" method which is motivated by the mathematical fact that solutions of the Oseen system have the same asymptotic structure at infinity as the solutions of the steady Navier-Stokes system with the same boundary conditions. Thus, in the ``bootstrap" method, the streamfunction is calculated as a perturbation to the solution to the Oseen system. Solutions are calculated for a range of Reynolds number and we also investigate the solutions behaviour when the Reynolds number goes to infinity. The thesis compares the numerical results obtained using the proposed spectral ``bootstrap" method and a finite--difference approach for unbounded domains against previous results. For Reynolds numbers lower than 100, the wake is slender and similar to the flow hypothesized by Kirchoff (1869) and Levi-Civita (1907). For large Reynolds numbers the wake becomes wider and appears more similar to the Prandtl-Batchelor flow, see Batchelor (1956).</p> / Doctor of Science (PhD)
10

Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes / Domain decomposition for systems deriving from Navier-Stokes equations

Cherel, David 12 December 2012 (has links)
Les équations fondamentales décrivant la dynamique de l'océan sont en théorie les équations de Navier-Stokes sur une sphère en rotation, auxquelles il faut a jouter une équation d'état pour la densité, et des équations de transport-diffusion pour les traceurs. Toutefois, un certain nombre de considérations physiques et de limitations pratiques ont nécessité le développement de modèles plus simples. En effet, un certain nombre d'hypothèses simplificatrices sont pleinement justifiées du point de vue de la physique des mouvements océaniques, dont les principales sont les approximations de couche mince et de Boussinesq. D'autre part, étant donné les dimensions des bassins océaniques (plusieurs centaines à plusieurs milliers de kilomètres), les coûts de calculs sont un facteur pratique extrêmement limitant. On est, à l'heure actuelle, capable de simuler l'océan mondial avec une résolution de l'ordre de dix kilomètres, en utilisant des modèles dits aux équations primitives, dont le coût de calcul est bien inférieur à celui des équations de Navier-Stokes. On est donc bien loin d'une modélisation complète des phénomènes décrits par ces équations, qui nécessiterait en théorie de considérer des échelles de l'ordre du millimètre. Les équations primitives sont issues des équations complètes de la mécanique des fluides en effectuant l'approximation hydrostatique, justifiée par la faible profondeur des domaines considérés au regard de leur dimension horizontale. Dans cette thèse, nous considérerons les équations de Navier-Stokes (NS) qui sont le coeur du modèle complet évoqué ci-dessus, sans prendre en compte les équations de la densité et des traceurs (salinité, température, etc.). Nous utiliserons l'approximation hydrostatique dans le chapitre 10, et le modèle sera naturellement appelé Navier-Stokes hydrostatique (NSH). Il correspond aux équations primitives dans lesquelles on ne prendrait pas en compte la densité et les traceurs. C'est dans ce cadre que se situe le travail présenté dans cette thèse, avec l'objectif à moyen terme de pouvoir coupler de façon rigoureuse et efficace les équations de Navier-Stokes avec les équations primitives. Dans une première partie, on présentera quelques rappels sur les équations de Navier-Stokes, leur discrétisation, ainsi que le cas-test de la cavité entraînée qui sera utilisé dans tout ce document. Dans une deuxième partie, on met en œuvre les méthodes de Schwarz sur les équations de Stokes et Navier-Stokes, en dérivant notamment des conditions absorbantes exactes et approchées pour ces systèmes. Enfin, dans une troisième partie, on proposera des pistes vers le couplage Navier-Stokes/Navier-Stokes hydrostatique décrit ci-dessus. / Fundamental equations describing the ocean dynamic are theoretically Navier-Stokes equations over a rotating sphere, whom need to add a state equation for the fluid density, and advection-diffusion equations for tracers. However, some physical considerations and practical limitations required to developped more simple models. Indeed, some simplifying hypotheses are well justified from a ocean dynamic point of view, whose principal ones are thin layer and Boussinesq approximations. On the other hand, considering the dimensions of oceans (from serveral hundreds to serveral thousands kilometers), computations costs are a very practical limitating factor. We are, by now, able to simulate the global ocean with about ten kilometers large grid mesh. This is very far from a complete modelisation of all phenomenes decribed by the Navier-Stokes equations, which require to consider scales of milimeters order. Primitives equations derive from complete equations describing fluid mecanics, by doing the hydrostatic approximations, which is justified by the low deepness of considered domains with regard to their horizontal dimension. In this thesis, we are considering Navier-Stokes equations (NS) which are the heart of the complete modele mentionned previously, without holding in account density and tracers equations. We will use the hydrostatic approximations, and the resulting equations will be named as hydrostatic Navier-Stokes equations (NSH).The mid term objective is to couple carefully Navier-Stokes equations with primitive equation. In a first part, we will remind few results for Navier-Stokes equations, their discretization, and the lid-driven cavity which wil be used as a test-case. In a second part, we will use Schwarz method with Stokes and Navier-Stokes equations, deriving in particular exact and approched absorbing interface conditions for these systems. Finally, in a third part, we shall propose first results towards coupling Navier-Stokes and hydrostatic Navier-Stokes equations.

Page generated in 0.0321 seconds