Para analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis. / A common alternative when analyzing binary data originated from a two-level hierarchical structure (for instance, student and school) is to assume a binomial distribution for the experimental units of the first level (student) conditionally to a normal random effect for the second level units (school). In this work, we propose the inclusion of a second normal random effect in the first level to contemplate a possible extra-binomial variability due to the dependence among the Bernoulli trials in the same individual. We obtain the maximum likelihood estimation process for this hierarchical model starting from the marginal likelihood of the data, after a double application of the adaptive Gauss-Hermite quadrature as an approximation of the integrals of the random effects. We conduct a simulation study to compare the inferential properties of the advocated model with the generalized linear (binomial) model, a quasi-likelihood model and the usual two-level hierarchical generalized linear model.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19062008-132744 |
Date | 05 March 2008 |
Creators | Lilian Nati |
Contributors | Dalton Francisco de Andrade, Gauss Moutinho Cordeiro, Clarice Garcia Borges Demetrio, Helio dos Santos Migon, Julio da Motta Singer |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds