• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA / Models for data analysis of longitudinal counts with overdispersion: INLA estimation

Rocha, Everton Batista da 04 September 2015 (has links)
Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho. / Discrete and longitudinal structures naturally arise in clinical trial data. Such data are usually correlated, particularly when the observations are made within the same experimental unit over time and, thus, statistical analyses must take this situation into account. Besides this typical correlation, overdispersion is another common phenomenon in discrete data, defined as a greater observed variability than that nominated by the statistical model. The causes of overdispersion are usually related to an excess of observed zeros (zero-ination), or an excess of observed positive specific values or even both. Molenberghs, Verbeke e Demétrio (2007) have developed a class of models that encompasses both overdispersion and correlation in count data: Poisson, Poisson-gama, Poisson-normal, Poissonnormal- gama (combined model) models. A Bayesian approach was presented by Rizzato (2011) to fit these models using the Markov Chain Monte Carlo method (MCMC). In this work, a Bayesian framework was adopted as well and, in order to consider the uncertainty related to the model parameters, the Integrated Nested Laplace Approximations (INLA) method was used. Along with the models considered in Rizzato (2011), another four new models were proposed including longitudinal correlation, overdispersion and zero-ination by structural and random zeros, namely: zero-inated Poisson (ZIP), zero-inated negative binomial (ZINB), zero-inated Poisson-normal (ZIP-normal) and the zero-inated negative binomial-normal (ZINB-normal) models. In order to illustrate the developed methodology, the models were fit to a real dataset, in which the response variable was taken to be the number of epileptic events per week in each individual. These individuals were split into two groups, one taking placebo and the other taking an experimental drug, and they observed up to 27 weeks. The model selection criteria were given by different predictive measures based on cross validation. In this setting, the ZIP-normal model was selected instead the usual model in the literature (combined model). The computational routines were implemented in R language and constitute a part of this work.
2

Modelos para análise de dados superdispersos de indução de haploidia em milho / Models for the analysis of overdispersed haploid induction data in maize

Silva, Andreza Jardelino da 09 February 2017 (has links)
O milho é uma espécie alógama cujo produto comercial são os híbridos, os quais originam-se do cruzamento de duas linhagens endogâmicas. Uma forma para obtenção de tais linhagens é por meio das técnicas de indução de haploidia e posterior obtenção dos duplo-haploides, permitindo até 100% de homozigose. Essas técnicas retornam resultados importantes no melhoramento de milho. Uma variável de interesse importante, obtida a partir dessas técnicas é a taxa de indução de haploidia, a qual trata-se de uma proporção entre o número de sementes haploides e o número total de sementes. O conjunto de dados foi obtido pelo cruzamento da linhagem indutora LI- ESALQ, com cinco genótipos comerciais de milho (2B587PW, 30F53H, BM820, DKB390 e STATUS VIPTERA), em duas gerações F1 e F2, por meio de um delineamento em blocos ao acaso, na área experimental do Departamento de Genética da ESALQ/USP. A teoria dos modelos lineares generalizados (MLGs) possibilita mais opções para a distribuição da variável resposta, exigindo somente que a mesma pertença à família exponencial sob a forma canônica. Tal classe de distribuições pode ser ainda expandida para modelos que permitem efeitos aleatórios no preditor linear, caracterizando a classe dos modelos lineares generalizados mistos (MLGMs). O objetivo deste trabalho foi analisar a taxa de indução de haploidia em milho tropical, utilizando um modelo binomial misto, com efeito aleatório em nível de indivíduo. O método de estimação foi o de máxima verossimilhança. Com base em tal modelagem, verificou-se que o genótipo 30F53H, destacou-se em relação aos demais quanto à eficiência da taxa de indução de haploidia. Todas as análises foram implementadas no software R. / The maize is an allogeneic species whose commercial product are the hybrids, which are gerated by the crossing of two endogenous lines. An alternative to obtain these lines is using the haploid induction techniques and subsequent doubled haploid production, that allows up to 100% homozygous. Artificial production of doubled haploids is important in plant breeding. An important variable, that results from these techniques, is the haploid induction rate, which is a proportion between the number of haploid seeds and the total number of seeds. The data set was obtained by crossing the inductive line LI-ESALQ, with five commercial genotypes of corn (2B587PW, 30F53H, BM820, DKB390 and STATUS VIPTERA), in two generations F1 e F2, in a randomized block design, in the experimental area of Department of Genetics, ESALQ/USP. The generalized linear models (GLMs) allow more options for the variable response distribution, requiring only that it belongs to the exponential family in canonical form. The GLM class can be expanded to models that allow random effects in the linear predictor, the mixed generalized linear models (MGLM) class. This work aimed to analyze the haploid induction rate in the tropical maize. The binomial mixed model, that included random effects in individual level, was proposed. The maximum likelihood method was used to estimate the parameters. The result revealed that the genotype 30F53H stands out in relation to the others regarding the efficiency in the haploid induction rate. All the analyzes were implemented in the software R.
3

Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA / Models for data analysis of longitudinal counts with overdispersion: INLA estimation

Everton Batista da Rocha 04 September 2015 (has links)
Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho. / Discrete and longitudinal structures naturally arise in clinical trial data. Such data are usually correlated, particularly when the observations are made within the same experimental unit over time and, thus, statistical analyses must take this situation into account. Besides this typical correlation, overdispersion is another common phenomenon in discrete data, defined as a greater observed variability than that nominated by the statistical model. The causes of overdispersion are usually related to an excess of observed zeros (zero-ination), or an excess of observed positive specific values or even both. Molenberghs, Verbeke e Demétrio (2007) have developed a class of models that encompasses both overdispersion and correlation in count data: Poisson, Poisson-gama, Poisson-normal, Poissonnormal- gama (combined model) models. A Bayesian approach was presented by Rizzato (2011) to fit these models using the Markov Chain Monte Carlo method (MCMC). In this work, a Bayesian framework was adopted as well and, in order to consider the uncertainty related to the model parameters, the Integrated Nested Laplace Approximations (INLA) method was used. Along with the models considered in Rizzato (2011), another four new models were proposed including longitudinal correlation, overdispersion and zero-ination by structural and random zeros, namely: zero-inated Poisson (ZIP), zero-inated negative binomial (ZINB), zero-inated Poisson-normal (ZIP-normal) and the zero-inated negative binomial-normal (ZINB-normal) models. In order to illustrate the developed methodology, the models were fit to a real dataset, in which the response variable was taken to be the number of epileptic events per week in each individual. These individuals were split into two groups, one taking placebo and the other taking an experimental drug, and they observed up to 27 weeks. The model selection criteria were given by different predictive measures based on cross validation. In this setting, the ZIP-normal model was selected instead the usual model in the literature (combined model). The computational routines were implemented in R language and constitute a part of this work.
4

Técnicas de diagnóstico nos modelos lineares generalizados com superdispersão

Rodrigues, Heloisa de Melo 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T12:27:53Z No. of bitstreams: 2 DISSERTAÇÃO FINAL - HELOISA DE MELO RODRIGUES.pdf: 1188446 bytes, checksum: 6b747fae4929500c9d046035820f9da5 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T12:27:53Z (GMT). No. of bitstreams: 2 DISSERTAÇÃO FINAL - HELOISA DE MELO RODRIGUES.pdf: 1188446 bytes, checksum: 6b747fae4929500c9d046035820f9da5 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / CAPES / No contexto de modelos de regressão, em alguns casos é comum o fenô- meno da superdispersão, que ocorre quando a variância observada dos dados excede aquela prevista por um modelo. Assim, Dey et al. (1997) desenvolveram os modelos lineares generalizados com superdispersão (MLGSs), considerando um modelo de regressão adicional para o parâmetro de dispersão, que é incorporado na função de variância. Desta forma, os MLGSs permitem modelar, simultaneamente, a média e a dispersão no contexto dos modelos lineares generalizados (MLGs) de Nelder e Wedderburn, 1972. Além disso, os MLGSs caracterizam-se por ser uma classe de modelos mais geral que os modelos lineares generalizados duplos (Smyth, 1989). Nesta dissertação são propostas técnicas de diagnósticos para os MLGSs, sendo desenvolvidas as técnicas de alavancagem generalizada, análise de resíduos, in uência global, como também o método de in uência local, este avaliado sob três esquemas de perturbação. Por m, é apresentada uma análise grá ca por meio de dados simulados.
5

Verossimilhança perfilada nos modelos lineares generalizados com superdispersão

ANDRADE, Thiago Alexandro Nascimento de 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T13:25:58Z No. of bitstreams: 2 CD- Dissertação Thiago A. N. de Andrade.pdf: 787795 bytes, checksum: eccb193488aebfede11aa4dd03b03587 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T13:25:58Z (GMT). No. of bitstreams: 2 CD- Dissertação Thiago A. N. de Andrade.pdf: 787795 bytes, checksum: eccb193488aebfede11aa4dd03b03587 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / CNPq / A classe de Modelos Lineares Generalizados com Superdispersão (MLGSs) proposta por Dey et al. (1997), tem sido amplamente utilizada na modelagem de dados cuja variância da variável resposta excede o valor nominal predito no modelo. O principal objetivo da presente dissertação é a obtenção de um fator de correção de Bartlett, segundo a metodologia proposta por DiCiccio e Stern (1994), à estatística da razão de verossimilhanças perfiladas ajustadas proposta por Cox e Reid (1987) para o teste conjunto dos efeitos da dispersão nesta classe de modelos. Estudos de simulação de Monte Carlo foram realizados com o objetivo de avaliar os desempenhos dos testes baseados nas estatísticas da razão de verossimilhanças usual (LR), razão de verossimilhanças perfiladas ajustadas (LRpa) e razão de verossimilhanças perfiladas ajustadas corrigida (LRc pa), no que se refere a tamanho e poder em amostras finitas. Os resultados numéricos obtidos favorecem o teste proposto nesta dissertação.
6

Modelos para análise de dados superdispersos de indução de haploidia em milho / Models for the analysis of overdispersed haploid induction data in maize

Andreza Jardelino da Silva 09 February 2017 (has links)
O milho é uma espécie alógama cujo produto comercial são os híbridos, os quais originam-se do cruzamento de duas linhagens endogâmicas. Uma forma para obtenção de tais linhagens é por meio das técnicas de indução de haploidia e posterior obtenção dos duplo-haploides, permitindo até 100% de homozigose. Essas técnicas retornam resultados importantes no melhoramento de milho. Uma variável de interesse importante, obtida a partir dessas técnicas é a taxa de indução de haploidia, a qual trata-se de uma proporção entre o número de sementes haploides e o número total de sementes. O conjunto de dados foi obtido pelo cruzamento da linhagem indutora LI- ESALQ, com cinco genótipos comerciais de milho (2B587PW, 30F53H, BM820, DKB390 e STATUS VIPTERA), em duas gerações F1 e F2, por meio de um delineamento em blocos ao acaso, na área experimental do Departamento de Genética da ESALQ/USP. A teoria dos modelos lineares generalizados (MLGs) possibilita mais opções para a distribuição da variável resposta, exigindo somente que a mesma pertença à família exponencial sob a forma canônica. Tal classe de distribuições pode ser ainda expandida para modelos que permitem efeitos aleatórios no preditor linear, caracterizando a classe dos modelos lineares generalizados mistos (MLGMs). O objetivo deste trabalho foi analisar a taxa de indução de haploidia em milho tropical, utilizando um modelo binomial misto, com efeito aleatório em nível de indivíduo. O método de estimação foi o de máxima verossimilhança. Com base em tal modelagem, verificou-se que o genótipo 30F53H, destacou-se em relação aos demais quanto à eficiência da taxa de indução de haploidia. Todas as análises foram implementadas no software R. / The maize is an allogeneic species whose commercial product are the hybrids, which are gerated by the crossing of two endogenous lines. An alternative to obtain these lines is using the haploid induction techniques and subsequent doubled haploid production, that allows up to 100% homozygous. Artificial production of doubled haploids is important in plant breeding. An important variable, that results from these techniques, is the haploid induction rate, which is a proportion between the number of haploid seeds and the total number of seeds. The data set was obtained by crossing the inductive line LI-ESALQ, with five commercial genotypes of corn (2B587PW, 30F53H, BM820, DKB390 and STATUS VIPTERA), in two generations F1 e F2, in a randomized block design, in the experimental area of Department of Genetics, ESALQ/USP. The generalized linear models (GLMs) allow more options for the variable response distribution, requiring only that it belongs to the exponential family in canonical form. The GLM class can be expanded to models that allow random effects in the linear predictor, the mixed generalized linear models (MGLM) class. This work aimed to analyze the haploid induction rate in the tropical maize. The binomial mixed model, that included random effects in individual level, was proposed. The maximum likelihood method was used to estimate the parameters. The result revealed that the genotype 30F53H stands out in relation to the others regarding the efficiency in the haploid induction rate. All the analyzes were implemented in the software R.
7

Superdispersão em dados binomiais hierárquicos / Overdispersion in hierarchical binomial data

Nati, Lilian 05 March 2008 (has links)
Para analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis. / A common alternative when analyzing binary data originated from a two-level hierarchical structure (for instance, student and school) is to assume a binomial distribution for the experimental units of the first level (student) conditionally to a normal random effect for the second level units (school). In this work, we propose the inclusion of a second normal random effect in the first level to contemplate a possible extra-binomial variability due to the dependence among the Bernoulli trials in the same individual. We obtain the maximum likelihood estimation process for this hierarchical model starting from the marginal likelihood of the data, after a double application of the adaptive Gauss-Hermite quadrature as an approximation of the integrals of the random effects. We conduct a simulation study to compare the inferential properties of the advocated model with the generalized linear (binomial) model, a quasi-likelihood model and the usual two-level hierarchical generalized linear model.
8

Superdispersão em dados binomiais hierárquicos / Overdispersion in hierarchical binomial data

Lilian Nati 05 March 2008 (has links)
Para analisar dados binários oriundos de uma estrutura hierárquica com dois níveis (por exemplo, aluno e escola), uma alternativa bastante utilizada é a suposição da distribuição binomial para as unidades experimentais do primeiro nível (aluno) condicionalmente a um efeito aleatório proveniente de uma distribuição normal para as unidades do segundo nível (escola). Neste trabalho, propõe-se a adição de um efeito aleatório normal no primeiro nível de um modelo linear generalizado hierárquico binomial para contemplar uma possível variabilidade extra-binomial decorrente da dependência entre os ensaios de Bernoulli de um mesmo indivíduo. Obtém-se o processo de estimação por máxima verossimilhança para este modelo a partir da verossimilhança marginal dos dados, após uma dupla aplicação do método de quadratura de Gauss-Hermite adaptativa como aproximação para as integrais dos efeitos aleatórios. Realiza-se um estudo de simulação para contrastar propriedades inferenciais do modelo aspirante com o modelo linear generalizado binomial, um modelo de quase-verossimilhança e o tradicional modelo linear generalizado hierárquico em dois níveis. / A common alternative when analyzing binary data originated from a two-level hierarchical structure (for instance, student and school) is to assume a binomial distribution for the experimental units of the first level (student) conditionally to a normal random effect for the second level units (school). In this work, we propose the inclusion of a second normal random effect in the first level to contemplate a possible extra-binomial variability due to the dependence among the Bernoulli trials in the same individual. We obtain the maximum likelihood estimation process for this hierarchical model starting from the marginal likelihood of the data, after a double application of the adaptive Gauss-Hermite quadrature as an approximation of the integrals of the random effects. We conduct a simulation study to compare the inferential properties of the advocated model with the generalized linear (binomial) model, a quasi-likelihood model and the usual two-level hierarchical generalized linear model.
9

Modelos Não Lineares Generalizados com Superdispersão

Terra, Maria Lídia Coco, Cysneiros, Audrey Helen A 31 January 2013 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T14:03:12Z No. of bitstreams: 2 TeseDoutoradoMariaLidia.pdf: 1307418 bytes, checksum: f88f918ecc9fbd62d6fddde58ecb741f (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T14:03:12Z (GMT). No. of bitstreams: 2 TeseDoutoradoMariaLidia.pdf: 1307418 bytes, checksum: f88f918ecc9fbd62d6fddde58ecb741f (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / CAPES / Dey et al. (1997) propuseram uma classe de modelos que permite a introdução de um segundo parâmetro que controla a variância independentemente da média através de um modelo de regressão, chamada modelos lineares generalizados com superdispersão. Nesta tese, estendemos a classe de modelos proposta por Dey et al. (1997) permitindo que as funções de ligações da média e da dispersão possam ser funções não lineares obtendo expressões matriciais para os fatores de correção Bartlett e tipo-Bartlett para as estatísticas da razão da verossimilhanças e escore, respectivamente, na classe dos modelos não lineares generalizados com superdispersão (MNLGSs). Foi realizado um estudo de simulação para avaliar os desempenhos dos testes baseados nas estatísticas da razão de verossimilhanças e escore com suas respectivas versões corrigidas (Bartlett e tipo-Bartlett) com relação ao tamanho e poder em amostras de tamanhos finitos. Propomos também técnicas de diagnósticos para os MNLGSs, tais como: Alavancagem generalizada, Distância de Cook e Influência local. Finalmente, um conjunto de dados reais é utilizado para avaliar nossos resultados teóricos
10

Análise da qualidade do ar : um estudo de séries temporais para dados de contagem

Silva, Kelly Cristina Ramos da 30 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:06:08Z (GMT). No. of bitstreams: 1 5213.pdf: 2943691 bytes, checksum: 6d301fea12ee3950f36c4359dd4a627e (MD5) Previous issue date: 2013-04-30 / Financiadora de Estudos e Projetos / The aim of this study was to investigate the monthly amount of unfavourable days to pollutant dispersion in the atmosphere on the metropolitan region of S ão Paulo (RMSP). It was considered two data sets derived from the air quality monitoring on the RMSP: (1) monthly observations of the times series of annual period and (2) monthly observations of the times series of period form May to September. It was used two classes of models: the Vector Autoregressive models (VAR) and Generalized Additive Models for Location, Scale and Shape (GAMLSS). The techniques presented in this dissertation was focus in: VAR class had emphasis on modelling stationary time series; and GAMLSS class had emphasis on models for count data, like Delaporte (DEL), Negative Binomial type I (NBI), Negative Binomial type II (NBII), Poisson (PO), inflated Poisson Zeros (ZIP), Inverse Poisson Gaussian (PIG) and Sichel (SI). The VAR was used only for the data set (1) obtaining a good prediction of the monthly amount of unfavourable days, although the adjustment had presented relatively large residues. The GAMLSS were used in both data sets, and the NBII model had good performance to data set (1), and ZIP model for data set (2). Also, it was made a simulation study to better understanding of the GAMLSS class for count data. The data were generated from three different Negative Binomial distributions. The results shows that the models NBI, NBII, and PIG adjusted well the data generated. The statistic techniques used in this dissertation was important to describe and understand the air quality problem. / O objetivo deste trabalho foi investigar a quantidade mensal de dias desfavoráveis à dispersão de poluentes na atmosfera da região metropolitana de São Paulo (RMSP). Foram considerados dois conjuntos de dados provenientes do monitoramento da qualidade do ar da RMSP: (1) um contendo observações mensais das séries temporais do período anual e (2) outro contendo observações mensais das séries temporais do período de maio a setembro. Foram utilizadas duas classes de modelos: os Modelos Vetoriais Autorregressivos (VAR) e os Modelos Aditivos Generalizados para Locação, Escala e Forma (GAMLSS), ressaltando que as técnicas apresentadas nessa dissertação da classe VAR têm ênfase na modelagem de séries temporais estacionárias e as da classe GAMLSS têm ênfase nos modelos para dados de contagem, sendo eles: Delaporte (DEL), Binomial Negativa tipo I (NBI), Binomial Negativa tipo II (NBII), Poisson (PO), Poisson Inflacionada de Zeros (ZIP), Poisson Inversa Gaussiana (PIG) e Sichel (SI). O modelo VAR foi utilizado apenas para o conjunto de dados (1), obtendo uma boa previsão da quantidade mensal de dias desfavoráveis, apesar do ajuste ter apresentado resíduos relativamente grandes. Os GAMLSS foram utilizados em ambos conjuntos de dados, sendo que os modelos NBII e ZIP melhor se ajustaram aos conjuntos de dados (1) e (2) respectivamente. Além disso, realizou-se um estudo de simulação para compreender melhor os GAMLSS investigados. Os dados foram gerados de três diferentes distribuições Binomiais Negativas. Os resultados obtidos mostraram que, tanto os modelos NBI e NBII como o modelo PIG, ajustaram bem os dados gerados. As técnicas estatísticas utilizadas nessa dissertação foram importantes para descrever e compreender o problema da qualidade do ar.

Page generated in 0.0726 seconds