Apoptosis plays a crucial role in multicellular organisms by preserving tissue homeostasis and removing harmful cells. The anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and the pro-apoptotic Bcl-2-associated X protein (Bax) act as major regulators of the mitochondrial apoptotic pathway. Activation of Bax via stress signals causes its translocation to the mitochondrial outer membrane (MOM). There, Bax forms homo-oligomeric pores, leading to the release of apoptogenic factors, caspase activation and ultimately cell death. However, the underlying mechanism for the recruitment and pore forming activity of Bax is still not elucidated. Nevertheless, the mitochondrial membrane system seems to play an active and crucial role, presumably being directly involved in the onset of the mitochondrial apoptosis. Since the formation of reactive oxygen species (ROS) is a common stress signal and one of the hallmarks of the mitochondrial apoptosis, direct damage can occur to these membranes by the generation of oxidized phospholipids (OxPls), whose presence can crucially influence the pro-apoptotic action of Bax there. To better understand the impact of OxPls on membranes as well as their potential role in the mitochondrial apoptotic process, defined OxPl species were incorporated into phospholipid vesicles and studied with various biophysical techniques. Differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy were used to gain insight into changes in membrane properties in the presence of OxPls. In addition to circular dichroism (CD) spectroscopy, DSC and solid state NMR were furthermore performed to elucidate the impact of OxPls on Bax-membrane interactions. The occurrence of OxPls gave rise to dramatic changes in membrane organization and dynamics, manifested as lateral phase separation into OxPl-rich and -poor domains and modified hydration at the membrane interface. The presence of OxPls also had a great impact on the interaction between Bax and mitochondria-mimicking vesicles, strongly promoting the association of the protein with the membrane. At the MOM, Bax is believed to be inhibited by Bcl-2. How this inhibition occurs is still a mystery due to the lack of biophysical information on Bcl-2, in particular on the full-length protein variant. Since Bcl-2 is also one of the main culprits in the progression of various forms of cancer, knowledge of the structural and mechanistic properties of the full-length protein is essential for a fundamental understanding of its function at a molecular level. To this end, a method for the production of full-length Bcl-2 was developed. By performing cell-free protein synthesis, preparative amounts of the protein were obtained, which enabled a biophysical characterization of the putative interaction between Bax and Bcl-2 using CD and fluorescence spectroscopy. A protocol for the reconstitution of Bcl-2 into proteoliposomes was also developed, promising for future studies of the full-length protein in its native membrane environment; a prerequisite to fully understand its pro-survival functions as well as providing crucial information for the design of novel anti-cancer drugs.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-61290 |
Date | January 2012 |
Creators | Wallgren, Marcus |
Publisher | Umeå universitet, Kemiska institutionen, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds