Return to search

Plasma assisted low temperature semiconductor wafer bonding

Direct semiconductor wafer bonding has emerged as a technology to meet the demand foradditional flexibility in materials integration. The applications are found in microelectronics, optoelectronics and micromechanics. For instance, wafer bonding is used to produce silicon-on-insulator (SOI) wafers. Wafer bonding is also interesting to use for combining dissimilar semiconductors, such as Si and InP, with different dictated optical, electronic and mechanicalproperties. This enables a completely new freedom in the design of components and systems, e.g. for high performance optoelectronic integrated circuits (OEIC). Although wafer bonding has proved to be a useful and versatile tool, the high temperature annealing that is needed to achieve reliable properties sometimes hampers its applicability. Therefore, low temperature wafer bonding procedures may further qualify this technology. In the present thesis, low temperature wafer bonding procedures using oxygen plasma surface activation have been studied. A specially designed fixture was adopted enabling in situ oxygen plasma wafer bonding. Oxygen plasma surface activation was seen to indeed yield high Si-Si bonding-strength at low temperatures. Here, the optimisation of the plasma parameters was shown to be the key to improved results. Furthermore, dependence of wafer bonded Si p-n junctions on the annealing temperature was investigated. InP-to-Si wafer bonding is also presented within this thesis. High temperature annealing was seen to induce severe material degradation. However, using oxygen plasma assisted wafer bonding reliable InP-to-Si integration was achieved already at low temperature, thereby circumventing the problems associated with the lattice and thermal mismatch that exist between these materials. As a result, low temperature InP-based epitaxial-layer transferring to Si could be presented. Finally, high-quality SiO2 insulator on InP and Si was realised at low temperatures. It is concluded that low temperature oxygen plasma assisted wafer bonding is an interesting approach to integrate dissimilar materials, for a wide range of applications.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-638
Date January 2001
CreatorsPasquariello, Donato
PublisherUppsala universitet, Institutionen för materialvetenskap, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationComprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 621

Page generated in 0.0025 seconds